ot.sliced

Sliced OT Distances

Functions

ot.sliced.get_random_projections(d, n_projections, seed=None, backend=None, type_as=None)[source]

Generates n_projections samples from the uniform on the unit sphere of dimension \(d-1\): \(\mathcal{U}(\mathcal{S}^{d-1})\)

Parameters:
  • d (int) – dimension of the space

  • n_projections (int) – number of samples requested

  • seed (int or RandomState, optional) – Seed used for numpy random number generator

  • backend – Backend to use for random generation

Returns:

out – The uniform unit vectors on the sphere

Return type:

ndarray, shape (d, n_projections)

Examples

>>> n_projections = 100
>>> d = 5
>>> projs = get_random_projections(d, n_projections)
>>> np.allclose(np.sum(np.square(projs), 0), 1.)  
True
ot.sliced.max_sliced_wasserstein_distance(X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False)[source]

Computes a Monte-Carlo approximation of the max p-Sliced Wasserstein distance

\[\mathcal{Max-SWD}_p(\mu, \nu) = \underset{\theta _in \mathcal{U}(\mathbb{S}^{d-1})}{\max} [\mathcal{W}_p^p(\theta_\# \mu, \theta_\# \nu)]^{\frac{1}{p}}\]

where :

  • \(\theta_\# \mu\) stands for the pushforwards of the projection \(\mathbb{R}^d \ni X \mapsto \langle \theta, X \rangle\)

Parameters:
  • X_s (ndarray, shape (n_samples_a, dim)) – samples in the source domain

  • X_t (ndarray, shape (n_samples_b, dim)) – samples in the target domain

  • a (ndarray, shape (n_samples_a,), optional) – samples weights in the source domain

  • b (ndarray, shape (n_samples_b,), optional) – samples weights in the target domain

  • n_projections (int, optional) – Number of projections used for the Monte-Carlo approximation

  • p (float, optional =) – Power p used for computing the sliced Wasserstein

  • projections (shape (dim, n_projections), optional) – Projection matrix (n_projections and seed are not used in this case)

  • seed (int or RandomState or None, optional) – Seed used for random number generator

  • log (bool, optional) – if True, sliced_wasserstein_distance returns the projections used and their associated EMD.

Returns:

  • cost (float) – Sliced Wasserstein Cost

  • log (dict, optional) – log dictionary return only if log==True in parameters

Examples

>>> n_samples_a = 20
>>> X = np.random.normal(0., 1., (n_samples_a, 5))
>>> sliced_wasserstein_distance(X, X, seed=0)  
0.0

References

ot.sliced.sliced_wasserstein_distance(X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False)[source]

Computes a Monte-Carlo approximation of the p-Sliced Wasserstein distance

\[\mathcal{SWD}_p(\mu, \nu) = \underset{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}}\left(\mathcal{W}_p^p(\theta_\# \mu, \theta_\# \nu)\right)^{\frac{1}{p}}\]

where :

  • \(\theta_\# \mu\) stands for the pushforwards of the projection \(X \in \mathbb{R}^d \mapsto \langle \theta, X \rangle\)

Parameters:
  • X_s (ndarray, shape (n_samples_a, dim)) – samples in the source domain

  • X_t (ndarray, shape (n_samples_b, dim)) – samples in the target domain

  • a (ndarray, shape (n_samples_a,), optional) – samples weights in the source domain

  • b (ndarray, shape (n_samples_b,), optional) – samples weights in the target domain

  • n_projections (int, optional) – Number of projections used for the Monte-Carlo approximation

  • p (float, optional =) – Power p used for computing the sliced Wasserstein

  • projections (shape (dim, n_projections), optional) – Projection matrix (n_projections and seed are not used in this case)

  • seed (int or RandomState or None, optional) – Seed used for random number generator

  • log (bool, optional) – if True, sliced_wasserstein_distance returns the projections used and their associated EMD.

Returns:

  • cost (float) – Sliced Wasserstein Cost

  • log (dict, optional) – log dictionary return only if log==True in parameters

Examples

>>> n_samples_a = 20
>>> X = np.random.normal(0., 1., (n_samples_a, 5))
>>> sliced_wasserstein_distance(X, X, seed=0)  
0.0

References

ot.sliced.sliced_wasserstein_sphere(X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False)[source]

Compute the spherical sliced-Wasserstein discrepancy.

\[SSW_p(\mu,\nu) = \left(\int_{\mathbb{V}_{d,2}} W_p^p(P^U_\#\mu, P^U_\#\nu)\ \mathrm{d}\sigma(U)\right)^{\frac{1}{p}}\]

where:

  • \(P^U_\# \mu\) stands for the pushforwards of the projection \(\forall x\in S^{d-1},\ P^U(x) = \frac{U^Tx}{\|U^Tx\|_2}\)

The function runs on backend but tensorflow and jax are not supported.

Parameters:
  • X_s (ndarray, shape (n_samples_a, dim)) – Samples in the source domain

  • X_t (ndarray, shape (n_samples_b, dim)) – Samples in the target domain

  • a (ndarray, shape (n_samples_a,), optional) – samples weights in the source domain

  • b (ndarray, shape (n_samples_b,), optional) – samples weights in the target domain

  • n_projections (int, optional) – Number of projections used for the Monte-Carlo approximation

  • p (float, optional (default=2)) – Power p used for computing the spherical sliced Wasserstein

  • projections (shape (n_projections, dim, 2), optional) – Projection matrix (n_projections and seed are not used in this case)

  • seed (int or RandomState or None, optional) – Seed used for random number generator

  • log (bool, optional) – if True, sliced_wasserstein_sphere returns the projections used and their associated EMD.

Returns:

  • cost (float) – Spherical Sliced Wasserstein Cost

  • log (dict, optional) – log dictionary return only if log==True in parameters

Examples

>>> n_samples_a = 20
>>> X = np.random.normal(0., 1., (n_samples_a, 5))
>>> X = X / np.sqrt(np.sum(X**2, -1, keepdims=True))
>>> sliced_wasserstein_sphere(X, X, seed=0)  
0.0

References

ot.sliced.sliced_wasserstein_sphere_unif(X_s, a=None, n_projections=50, seed=None, log=False)[source]

Compute the 2-spherical sliced wasserstein w.r.t. a uniform distribution.

\[SSW_2(\mu_n, \nu)\]

where

  • \(\mu_n=\sum_{i=1}^n \alpha_i \delta_{x_i}\)

  • \(\nu=\mathrm{Unif}(S^1)\)

Parameters:
  • X_s (ndarray, shape (n_samples_a, dim)) – Samples in the source domain

  • a (ndarray, shape (n_samples_a,), optional) – samples weights in the source domain

  • n_projections (int, optional) – Number of projections used for the Monte-Carlo approximation

  • seed (int or RandomState or None, optional) – Seed used for random number generator

  • log (bool, optional) – if True, sliced_wasserstein_distance returns the projections used and their associated EMD.

Returns:

  • cost (float) – Spherical Sliced Wasserstein Cost

  • log (dict, optional) – log dictionary return only if log==True in parameters

Examples

>>> np.random.seed(42)
>>> x0 = np.random.randn(500,3)
>>> x0 = x0 / np.sqrt(np.sum(x0**2, -1, keepdims=True))
>>> ssw = sliced_wasserstein_sphere_unif(x0, seed=42)
>>> np.allclose(sliced_wasserstein_sphere_unif(x0, seed=42), 0.01734, atol=1e-3)
True

References:

ot.sliced.get_random_projections(d, n_projections, seed=None, backend=None, type_as=None)[source]

Generates n_projections samples from the uniform on the unit sphere of dimension \(d-1\): \(\mathcal{U}(\mathcal{S}^{d-1})\)

Parameters:
  • d (int) – dimension of the space

  • n_projections (int) – number of samples requested

  • seed (int or RandomState, optional) – Seed used for numpy random number generator

  • backend – Backend to use for random generation

Returns:

out – The uniform unit vectors on the sphere

Return type:

ndarray, shape (d, n_projections)

Examples

>>> n_projections = 100
>>> d = 5
>>> projs = get_random_projections(d, n_projections)
>>> np.allclose(np.sum(np.square(projs), 0), 1.)  
True
ot.sliced.max_sliced_wasserstein_distance(X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False)[source]

Computes a Monte-Carlo approximation of the max p-Sliced Wasserstein distance

\[\mathcal{Max-SWD}_p(\mu, \nu) = \underset{\theta _in \mathcal{U}(\mathbb{S}^{d-1})}{\max} [\mathcal{W}_p^p(\theta_\# \mu, \theta_\# \nu)]^{\frac{1}{p}}\]

where :

  • \(\theta_\# \mu\) stands for the pushforwards of the projection \(\mathbb{R}^d \ni X \mapsto \langle \theta, X \rangle\)

Parameters:
  • X_s (ndarray, shape (n_samples_a, dim)) – samples in the source domain

  • X_t (ndarray, shape (n_samples_b, dim)) – samples in the target domain

  • a (ndarray, shape (n_samples_a,), optional) – samples weights in the source domain

  • b (ndarray, shape (n_samples_b,), optional) – samples weights in the target domain

  • n_projections (int, optional) – Number of projections used for the Monte-Carlo approximation

  • p (float, optional =) – Power p used for computing the sliced Wasserstein

  • projections (shape (dim, n_projections), optional) – Projection matrix (n_projections and seed are not used in this case)

  • seed (int or RandomState or None, optional) – Seed used for random number generator

  • log (bool, optional) – if True, sliced_wasserstein_distance returns the projections used and their associated EMD.

Returns:

  • cost (float) – Sliced Wasserstein Cost

  • log (dict, optional) – log dictionary return only if log==True in parameters

Examples

>>> n_samples_a = 20
>>> X = np.random.normal(0., 1., (n_samples_a, 5))
>>> sliced_wasserstein_distance(X, X, seed=0)  
0.0

References

ot.sliced.sliced_wasserstein_distance(X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False)[source]

Computes a Monte-Carlo approximation of the p-Sliced Wasserstein distance

\[\mathcal{SWD}_p(\mu, \nu) = \underset{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}}\left(\mathcal{W}_p^p(\theta_\# \mu, \theta_\# \nu)\right)^{\frac{1}{p}}\]

where :

  • \(\theta_\# \mu\) stands for the pushforwards of the projection \(X \in \mathbb{R}^d \mapsto \langle \theta, X \rangle\)

Parameters:
  • X_s (ndarray, shape (n_samples_a, dim)) – samples in the source domain

  • X_t (ndarray, shape (n_samples_b, dim)) – samples in the target domain

  • a (ndarray, shape (n_samples_a,), optional) – samples weights in the source domain

  • b (ndarray, shape (n_samples_b,), optional) – samples weights in the target domain

  • n_projections (int, optional) – Number of projections used for the Monte-Carlo approximation

  • p (float, optional =) – Power p used for computing the sliced Wasserstein

  • projections (shape (dim, n_projections), optional) – Projection matrix (n_projections and seed are not used in this case)

  • seed (int or RandomState or None, optional) – Seed used for random number generator

  • log (bool, optional) – if True, sliced_wasserstein_distance returns the projections used and their associated EMD.

Returns:

  • cost (float) – Sliced Wasserstein Cost

  • log (dict, optional) – log dictionary return only if log==True in parameters

Examples

>>> n_samples_a = 20
>>> X = np.random.normal(0., 1., (n_samples_a, 5))
>>> sliced_wasserstein_distance(X, X, seed=0)  
0.0

References

ot.sliced.sliced_wasserstein_sphere(X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False)[source]

Compute the spherical sliced-Wasserstein discrepancy.

\[SSW_p(\mu,\nu) = \left(\int_{\mathbb{V}_{d,2}} W_p^p(P^U_\#\mu, P^U_\#\nu)\ \mathrm{d}\sigma(U)\right)^{\frac{1}{p}}\]

where:

  • \(P^U_\# \mu\) stands for the pushforwards of the projection \(\forall x\in S^{d-1},\ P^U(x) = \frac{U^Tx}{\|U^Tx\|_2}\)

The function runs on backend but tensorflow and jax are not supported.

Parameters:
  • X_s (ndarray, shape (n_samples_a, dim)) – Samples in the source domain

  • X_t (ndarray, shape (n_samples_b, dim)) – Samples in the target domain

  • a (ndarray, shape (n_samples_a,), optional) – samples weights in the source domain

  • b (ndarray, shape (n_samples_b,), optional) – samples weights in the target domain

  • n_projections (int, optional) – Number of projections used for the Monte-Carlo approximation

  • p (float, optional (default=2)) – Power p used for computing the spherical sliced Wasserstein

  • projections (shape (n_projections, dim, 2), optional) – Projection matrix (n_projections and seed are not used in this case)

  • seed (int or RandomState or None, optional) – Seed used for random number generator

  • log (bool, optional) – if True, sliced_wasserstein_sphere returns the projections used and their associated EMD.

Returns:

  • cost (float) – Spherical Sliced Wasserstein Cost

  • log (dict, optional) – log dictionary return only if log==True in parameters

Examples

>>> n_samples_a = 20
>>> X = np.random.normal(0., 1., (n_samples_a, 5))
>>> X = X / np.sqrt(np.sum(X**2, -1, keepdims=True))
>>> sliced_wasserstein_sphere(X, X, seed=0)  
0.0

References

ot.sliced.sliced_wasserstein_sphere_unif(X_s, a=None, n_projections=50, seed=None, log=False)[source]

Compute the 2-spherical sliced wasserstein w.r.t. a uniform distribution.

\[SSW_2(\mu_n, \nu)\]

where

  • \(\mu_n=\sum_{i=1}^n \alpha_i \delta_{x_i}\)

  • \(\nu=\mathrm{Unif}(S^1)\)

Parameters:
  • X_s (ndarray, shape (n_samples_a, dim)) – Samples in the source domain

  • a (ndarray, shape (n_samples_a,), optional) – samples weights in the source domain

  • n_projections (int, optional) – Number of projections used for the Monte-Carlo approximation

  • seed (int or RandomState or None, optional) – Seed used for random number generator

  • log (bool, optional) – if True, sliced_wasserstein_distance returns the projections used and their associated EMD.

Returns:

  • cost (float) – Spherical Sliced Wasserstein Cost

  • log (dict, optional) – log dictionary return only if log==True in parameters

Examples

>>> np.random.seed(42)
>>> x0 = np.random.randn(500,3)
>>> x0 = x0 / np.sqrt(np.sum(x0**2, -1, keepdims=True))
>>> ssw = sliced_wasserstein_sphere_unif(x0, seed=42)
>>> np.allclose(sliced_wasserstein_sphere_unif(x0, seed=42), 0.01734, atol=1e-3)
True

References: