Source code for ot.sliced

"""
Sliced OT Distances

"""

# Author: Adrien Corenflos <adrien.corenflos@aalto.fi>
#         Nicolas Courty   <ncourty@irisa.fr>
#         RĂ©mi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License

import numpy as np
from .backend import get_backend, NumpyBackend
from .utils import list_to_array, get_coordinate_circle
from .lp import wasserstein_circle, semidiscrete_wasserstein2_unif_circle


[docs] def get_random_projections(d, n_projections, seed=None, backend=None, type_as=None): r""" Generates n_projections samples from the uniform on the unit sphere of dimension :math:`d-1`: :math:`\mathcal{U}(\mathcal{S}^{d-1})` Parameters ---------- d : int dimension of the space n_projections : int number of samples requested seed: int or RandomState, optional Seed used for numpy random number generator backend: Backend to use for random generation Returns ------- out: ndarray, shape (d, n_projections) The uniform unit vectors on the sphere Examples -------- >>> n_projections = 100 >>> d = 5 >>> projs = get_random_projections(d, n_projections) >>> np.allclose(np.sum(np.square(projs), 0), 1.) # doctest: +NORMALIZE_WHITESPACE True """ if backend is None: nx = NumpyBackend() else: nx = backend if isinstance(seed, np.random.RandomState) and str(nx) == "numpy": projections = seed.randn(d, n_projections) else: if seed is not None: nx.seed(seed) projections = nx.randn(d, n_projections, type_as=type_as) projections = projections / nx.sqrt(nx.sum(projections**2, 0, keepdims=True)) return projections
[docs] def sliced_wasserstein_distance( X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False, ): r""" Computes a Monte-Carlo approximation of the p-Sliced Wasserstein distance .. math:: \mathcal{SWD}_p(\mu, \nu) = \underset{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}}\left(\mathcal{W}_p^p(\theta_\# \mu, \theta_\# \nu)\right)^{\frac{1}{p}} where : - :math:`\theta_\# \mu` stands for the pushforwards of the projection :math:`X \in \mathbb{R}^d \mapsto \langle \theta, X \rangle` Parameters ---------- X_s : ndarray, shape (n_samples_a, dim) samples in the source domain X_t : ndarray, shape (n_samples_b, dim) samples in the target domain a : ndarray, shape (n_samples_a,), optional samples weights in the source domain b : ndarray, shape (n_samples_b,), optional samples weights in the target domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation p: float, optional = Power p used for computing the sliced Wasserstein projections: shape (dim, n_projections), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, sliced_wasserstein_distance returns the projections used and their associated EMD. Returns ------- cost: float Sliced Wasserstein Cost log : dict, optional log dictionary return only if log==True in parameters Examples -------- >>> n_samples_a = 20 >>> X = np.random.normal(0., 1., (n_samples_a, 5)) >>> sliced_wasserstein_distance(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE 0.0 References ---------- .. [31] Bonneel, Nicolas, et al. "Sliced and radon wasserstein barycenters of measures." Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45 """ from .lp import wasserstein_1d X_s, X_t = list_to_array(X_s, X_t) if a is not None and b is not None and projections is None: nx = get_backend(X_s, X_t, a, b) elif a is not None and b is not None and projections is not None: nx = get_backend(X_s, X_t, a, b, projections) elif a is None and b is None and projections is not None: nx = get_backend(X_s, X_t, projections) else: nx = get_backend(X_s, X_t) n = X_s.shape[0] m = X_t.shape[0] if X_s.shape[1] != X_t.shape[1]: raise ValueError( "X_s and X_t must have the same number of dimensions {} and {} respectively given".format( X_s.shape[1], X_t.shape[1] ) ) if a is None: a = nx.full(n, 1 / n, type_as=X_s) if b is None: b = nx.full(m, 1 / m, type_as=X_s) d = X_s.shape[1] if projections is None: projections = get_random_projections( d, n_projections, seed, backend=nx, type_as=X_s ) else: n_projections = projections.shape[1] X_s_projections = nx.dot(X_s, projections) X_t_projections = nx.dot(X_t, projections) projected_emd = wasserstein_1d(X_s_projections, X_t_projections, a, b, p=p) res = (nx.sum(projected_emd) / n_projections) ** (1.0 / p) if log: return res, {"projections": projections, "projected_emds": projected_emd} return res
[docs] def max_sliced_wasserstein_distance( X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False, ): r""" Computes a Monte-Carlo approximation of the max p-Sliced Wasserstein distance .. math:: \mathcal{Max-SWD}_p(\mu, \nu) = \underset{\theta _in \mathcal{U}(\mathbb{S}^{d-1})}{\max} [\mathcal{W}_p^p(\theta_\# \mu, \theta_\# \nu)]^{\frac{1}{p}} where : - :math:`\theta_\# \mu` stands for the pushforwards of the projection :math:`\mathbb{R}^d \ni X \mapsto \langle \theta, X \rangle` Parameters ---------- X_s : ndarray, shape (n_samples_a, dim) samples in the source domain X_t : ndarray, shape (n_samples_b, dim) samples in the target domain a : ndarray, shape (n_samples_a,), optional samples weights in the source domain b : ndarray, shape (n_samples_b,), optional samples weights in the target domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation p: float, optional = Power p used for computing the sliced Wasserstein projections: shape (dim, n_projections), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, sliced_wasserstein_distance returns the projections used and their associated EMD. Returns ------- cost: float Sliced Wasserstein Cost log : dict, optional log dictionary return only if log==True in parameters Examples -------- >>> n_samples_a = 20 >>> X = np.random.normal(0., 1., (n_samples_a, 5)) >>> sliced_wasserstein_distance(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE 0.0 References ---------- .. [35] Deshpande, I., Hu, Y. T., Sun, R., Pyrros, A., Siddiqui, N., Koyejo, S., ... & Schwing, A. G. (2019). Max-sliced wasserstein distance and its use for gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10648-10656). """ from .lp import wasserstein_1d X_s, X_t = list_to_array(X_s, X_t) if a is not None and b is not None and projections is None: nx = get_backend(X_s, X_t, a, b) elif a is not None and b is not None and projections is not None: nx = get_backend(X_s, X_t, a, b, projections) elif a is None and b is None and projections is not None: nx = get_backend(X_s, X_t, projections) else: nx = get_backend(X_s, X_t) n = X_s.shape[0] m = X_t.shape[0] if X_s.shape[1] != X_t.shape[1]: raise ValueError( "X_s and X_t must have the same number of dimensions {} and {} respectively given".format( X_s.shape[1], X_t.shape[1] ) ) if a is None: a = nx.full(n, 1 / n, type_as=X_s) if b is None: b = nx.full(m, 1 / m, type_as=X_s) d = X_s.shape[1] if projections is None: projections = get_random_projections( d, n_projections, seed, backend=nx, type_as=X_s ) X_s_projections = nx.dot(X_s, projections) X_t_projections = nx.dot(X_t, projections) projected_emd = wasserstein_1d(X_s_projections, X_t_projections, a, b, p=p) res = nx.max(projected_emd) ** (1.0 / p) if log: return res, {"projections": projections, "projected_emds": projected_emd} return res
[docs] def sliced_wasserstein_sphere( X_s, X_t, a=None, b=None, n_projections=50, p=2, projections=None, seed=None, log=False, ): r""" Compute the spherical sliced-Wasserstein discrepancy. .. math:: SSW_p(\mu,\nu) = \left(\int_{\mathbb{V}_{d,2}} W_p^p(P^U_\#\mu, P^U_\#\nu)\ \mathrm{d}\sigma(U)\right)^{\frac{1}{p}} where: - :math:`P^U_\# \mu` stands for the pushforwards of the projection :math:`\forall x\in S^{d-1},\ P^U(x) = \frac{U^Tx}{\|U^Tx\|_2}` The function runs on backend but tensorflow and jax are not supported. Parameters ---------- X_s: ndarray, shape (n_samples_a, dim) Samples in the source domain X_t: ndarray, shape (n_samples_b, dim) Samples in the target domain a : ndarray, shape (n_samples_a,), optional samples weights in the source domain b : ndarray, shape (n_samples_b,), optional samples weights in the target domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation p: float, optional (default=2) Power p used for computing the spherical sliced Wasserstein projections: shape (n_projections, dim, 2), optional Projection matrix (n_projections and seed are not used in this case) seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, sliced_wasserstein_sphere returns the projections used and their associated EMD. Returns ------- cost: float Spherical Sliced Wasserstein Cost log: dict, optional log dictionary return only if log==True in parameters Examples -------- >>> n_samples_a = 20 >>> X = np.random.normal(0., 1., (n_samples_a, 5)) >>> X = X / np.sqrt(np.sum(X**2, -1, keepdims=True)) >>> sliced_wasserstein_sphere(X, X, seed=0) # doctest: +NORMALIZE_WHITESPACE 0.0 References ---------- .. [46] Bonet, C., Berg, P., Courty, N., Septier, F., Drumetz, L., & Pham, M. T. (2023). Spherical sliced-wasserstein. International Conference on Learning Representations. """ if a is not None and b is not None: nx = get_backend(X_s, X_t, a, b) else: nx = get_backend(X_s, X_t) n, d = X_s.shape m, _ = X_t.shape if X_s.shape[1] != X_t.shape[1]: raise ValueError( "X_s and X_t must have the same number of dimensions {} and {} respectively given".format( X_s.shape[1], X_t.shape[1] ) ) if nx.any(nx.abs(nx.sum(X_s**2, axis=-1) - 1) > 10 ** (-4)): raise ValueError("X_s is not on the sphere.") if nx.any(nx.abs(nx.sum(X_t**2, axis=-1) - 1) > 10 ** (-4)): raise ValueError("X_t is not on the sphere.") if projections is None: # Uniforms and independent samples on the Stiefel manifold V_{d,2} if isinstance(seed, np.random.RandomState) and str(nx) == "numpy": Z = seed.randn(n_projections, d, 2) else: if seed is not None: nx.seed(seed) Z = nx.randn(n_projections, d, 2, type_as=X_s) projections, _ = nx.qr(Z) else: n_projections = projections.shape[0] # Projection on S^1 # Projection on plane Xps = nx.einsum("ikj, lk -> ilj", projections, X_s) Xpt = nx.einsum("ikj, lk -> ilj", projections, X_t) # Projection on sphere Xps = Xps / nx.sqrt(nx.sum(Xps**2, -1, keepdims=True)) Xpt = Xpt / nx.sqrt(nx.sum(Xpt**2, -1, keepdims=True)) # Get coordinates on [0,1[ Xps_coords = nx.reshape( get_coordinate_circle(nx.reshape(Xps, (-1, 2))), (n_projections, n) ) Xpt_coords = nx.reshape( get_coordinate_circle(nx.reshape(Xpt, (-1, 2))), (n_projections, m) ) projected_emd = wasserstein_circle( Xps_coords.T, Xpt_coords.T, u_weights=a, v_weights=b, p=p ) res = nx.mean(projected_emd) ** (1 / p) if log: return res, {"projections": projections, "projected_emds": projected_emd} return res
[docs] def sliced_wasserstein_sphere_unif(X_s, a=None, n_projections=50, seed=None, log=False): r"""Compute the 2-spherical sliced wasserstein w.r.t. a uniform distribution. .. math:: SSW_2(\mu_n, \nu) where - :math:`\mu_n=\sum_{i=1}^n \alpha_i \delta_{x_i}` - :math:`\nu=\mathrm{Unif}(S^1)` Parameters ---------- X_s: ndarray, shape (n_samples_a, dim) Samples in the source domain a : ndarray, shape (n_samples_a,), optional samples weights in the source domain n_projections : int, optional Number of projections used for the Monte-Carlo approximation seed: int or RandomState or None, optional Seed used for random number generator log: bool, optional if True, sliced_wasserstein_distance returns the projections used and their associated EMD. Returns ------- cost: float Spherical Sliced Wasserstein Cost log: dict, optional log dictionary return only if log==True in parameters Examples --------- >>> np.random.seed(42) >>> x0 = np.random.randn(500,3) >>> x0 = x0 / np.sqrt(np.sum(x0**2, -1, keepdims=True)) >>> ssw = sliced_wasserstein_sphere_unif(x0, seed=42) >>> np.allclose(sliced_wasserstein_sphere_unif(x0, seed=42), 0.01734, atol=1e-3) True References: ----------- .. [46] Bonet, C., Berg, P., Courty, N., Septier, F., Drumetz, L., & Pham, M. T. (2023). Spherical sliced-wasserstein. International Conference on Learning Representations. """ if a is not None: nx = get_backend(X_s, a) else: nx = get_backend(X_s) n, d = X_s.shape if nx.any(nx.abs(nx.sum(X_s**2, axis=-1) - 1) > 10 ** (-4)): raise ValueError("X_s is not on the sphere.") # Uniforms and independent samples on the Stiefel manifold V_{d,2} if isinstance(seed, np.random.RandomState) and str(nx) == "numpy": Z = seed.randn(n_projections, d, 2) else: if seed is not None: nx.seed(seed) Z = nx.randn(n_projections, d, 2, type_as=X_s) projections, _ = nx.qr(Z) # Projection on S^1 # Projection on plane Xps = nx.einsum("ikj, lk -> ilj", projections, X_s) # Projection on sphere Xps = Xps / nx.sqrt(nx.sum(Xps**2, -1, keepdims=True)) # Get coordinates on [0,1[ Xps_coords = nx.reshape( get_coordinate_circle(nx.reshape(Xps, (-1, 2))), (n_projections, n) ) projected_emd = semidiscrete_wasserstein2_unif_circle(Xps_coords.T, u_weights=a) res = nx.mean(projected_emd) ** (1 / 2) if log: return res, {"projections": projections, "projected_emds": projected_emd} return res