rank (int, optional. Default is None. (>0)) – Nonnegative rank of the OT plan. If None, min(ns, nt) is considered.
alpha (int, optional. Default is 1e-10. (>0 and <1/r)) – Lower bound for the weight vector g.
rescale_cost (bool, optional. Default is False) – Rescale the low rank factorization of the sqeuclidean cost matrix
init (str, optional. Default is 'random'.) – Initialization strategy for the low rank couplings. ‘random’, ‘deterministic’ or ‘kmeans’
reg_init (float, optional. Default is 1e-1. (>0)) – Regularization term for a ‘kmeans’ init. If None, 1 is considered.
seed_init (int, optional. Default is 49. (>0)) – Random state for a ‘random’ or ‘kmeans’ init strategy.
gamma_init (str, optional. Default is "rescale".) – Initialization strategy for gamma. ‘rescale’, or ‘theory’
Gamma is a constant that scales the convergence criterion of the Mirror Descent
optimization scheme used to compute the low-rank couplings (Q, R and g)
numItermax (int, optional. Default is 2000.) – Max number of iterations for the Dykstra algorithm
stopThr (float, optional. Default is 1e-7.) – Stop threshold on error (>0) in Dykstra
warn (bool, optional) – if True, raises a warning if the algorithm doesn’t convergence.
rank (int, optional. Default is None. (>0)) – Nonnegative rank of the OT plan. If None, min(ns, nt) is considered.
alpha (int, optional. Default is 1e-10. (>0 and <1/r)) – Lower bound for the weight vector g.
rescale_cost (bool, optional. Default is False) – Rescale the low rank factorization of the sqeuclidean cost matrix
init (str, optional. Default is 'random'.) – Initialization strategy for the low rank couplings. ‘random’, ‘deterministic’ or ‘kmeans’
reg_init (float, optional. Default is 1e-1. (>0)) – Regularization term for a ‘kmeans’ init. If None, 1 is considered.
seed_init (int, optional. Default is 49. (>0)) – Random state for a ‘random’ or ‘kmeans’ init strategy.
gamma_init (str, optional. Default is "rescale".) – Initialization strategy for gamma. ‘rescale’, or ‘theory’
Gamma is a constant that scales the convergence criterion of the Mirror Descent
optimization scheme used to compute the low-rank couplings (Q, R and g)
numItermax (int, optional. Default is 2000.) – Max number of iterations for the Dykstra algorithm
stopThr (float, optional. Default is 1e-7.) – Stop threshold on error (>0) in Dykstra
warn (bool, optional) – if True, raises a warning if the algorithm doesn’t convergence.