Stochastic examples

This example is designed to show how to use the stochastic optimization algorithms for discrete and semi-continuous measures from the POT library.

[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. Stochastic Optimization for Large-scale Optimal Transport. Advances in Neural Information Processing Systems (2016).

[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A. & Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)

# Author: Kilian Fatras <kilian.fatras@gmail.com>
#
# License: MIT License

import matplotlib.pylab as pl
import numpy as np
import ot
import ot.plot

Compute the Transportation Matrix for the Semi-Dual Problem

Discrete case

Sample two discrete measures for the discrete case and compute their cost matrix c.

Call the “SAG” method to find the transportation matrix in the discrete case

[[2.55553509e-02 9.96395660e-02 1.76579142e-02 4.31178196e-06]
 [1.21640234e-01 1.25357448e-02 1.30225078e-03 7.37891338e-03]
 [3.56123975e-03 7.61451746e-02 6.31505947e-02 1.33831456e-07]
 [2.61515202e-02 3.34246014e-02 8.28734709e-02 4.07550428e-04]
 [9.85500870e-03 7.52288517e-04 1.08262628e-02 1.21423583e-01]
 [2.16904253e-02 9.03825797e-04 1.87178503e-03 1.18391107e-01]
 [4.15462212e-02 2.65987989e-02 7.23177216e-02 2.39440107e-03]]

Semi-Continuous Case

Sample one general measure a, one discrete measures b for the semicontinuous case, the points where source and target measures are defined and compute the cost matrix.

Call the “ASGD” method to find the transportation matrix in the semicontinuous case.

[3.76510592 7.64094845 3.78917596 2.57007572 1.65543745 3.4893295
 2.70623359] [-2.50319213 -2.25852474 -0.82688144  5.5885983 ]
[[2.19802712e-02 1.03838786e-01 1.70349712e-02 3.11402024e-06]
 [1.20269164e-01 1.50177118e-02 1.44418382e-03 6.12608330e-03]
 [3.05271739e-03 7.90868636e-02 6.07174656e-02 9.63289956e-08]
 [2.33574229e-02 3.61718564e-02 8.30222147e-02 3.05648858e-04]
 [1.12749105e-02 1.04283861e-03 1.38926617e-02 1.16646732e-01]
 [2.49295484e-02 1.25865775e-03 2.41297662e-03 1.14255960e-01]
 [3.78279732e-02 2.93440562e-02 7.38545201e-02 1.83059335e-03]]

Compare the results with the Sinkhorn algorithm

[[2.55553508e-02 9.96395661e-02 1.76579142e-02 4.31178193e-06]
 [1.21640234e-01 1.25357448e-02 1.30225079e-03 7.37891333e-03]
 [3.56123974e-03 7.61451746e-02 6.31505947e-02 1.33831455e-07]
 [2.61515201e-02 3.34246014e-02 8.28734709e-02 4.07550425e-04]
 [9.85500876e-03 7.52288523e-04 1.08262629e-02 1.21423583e-01]
 [2.16904255e-02 9.03825804e-04 1.87178504e-03 1.18391107e-01]
 [4.15462212e-02 2.65987989e-02 7.23177217e-02 2.39440105e-03]]

Plot Transportation Matrices

For SAG

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sag_pi, "semi-dual : OT matrix SAG")
pl.show()
plot stochastic

For ASGD

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, asgd_pi, "semi-dual : OT matrix ASGD")
pl.show()
plot stochastic

For Sinkhorn

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sinkhorn_pi, "OT matrix Sinkhorn")
pl.show()
plot stochastic

Compute the Transportation Matrix for the Dual Problem

Semi-continuous case

Sample one general measure a, one discrete measures b for the semi-continuous case and compute the cost matrix c.

Call the “SGD” dual method to find the transportation matrix in the semi-continuous case

[0.91732819 2.7799397  1.07406199 0.01970121 0.60717156 1.80910257
 0.10902398] [0.34639291 0.47463643 1.57482501 4.92047485]
[[2.20200322e-02 9.25938748e-02 1.09047347e-02 9.25518158e-08]
 [1.60917795e-02 1.78850969e-03 1.23469888e-04 2.43170724e-05]
 [3.49209980e-03 8.05271170e-02 4.43815515e-02 3.26915633e-09]
 [3.15043415e-02 4.34264205e-02 7.15531236e-02 1.22305749e-05]
 [6.82992713e-02 5.62286712e-03 5.37746045e-02 2.09630346e-02]
 [8.02712798e-02 3.60737409e-03 4.96463916e-03 1.09144850e-02]
 [4.86875958e-02 3.36173252e-02 6.07394894e-02 6.98997703e-05]]

Compare the results with the Sinkhorn algorithm

Call the Sinkhorn algorithm from POT

[[2.55553508e-02 9.96395661e-02 1.76579142e-02 4.31178193e-06]
 [1.21640234e-01 1.25357448e-02 1.30225079e-03 7.37891333e-03]
 [3.56123974e-03 7.61451746e-02 6.31505947e-02 1.33831455e-07]
 [2.61515201e-02 3.34246014e-02 8.28734709e-02 4.07550425e-04]
 [9.85500876e-03 7.52288523e-04 1.08262629e-02 1.21423583e-01]
 [2.16904255e-02 9.03825804e-04 1.87178504e-03 1.18391107e-01]
 [4.15462212e-02 2.65987989e-02 7.23177217e-02 2.39440105e-03]]

Plot Transportation Matrices

For SGD

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sgd_dual_pi, "dual : OT matrix SGD")
pl.show()
plot stochastic

For Sinkhorn

pl.figure(4, figsize=(5, 5))
ot.plot.plot1D_mat(a, b, sinkhorn_pi, "OT matrix Sinkhorn")
pl.show()
plot stochastic

Total running time of the script: (0 minutes 6.266 seconds)

Gallery generated by Sphinx-Gallery