# Debiased Sinkhorn barycenter demo

This example illustrates the computation of the debiased Sinkhorn barycenter as proposed in 37.

37

Janati, H., Cuturi, M., Gramfort, A. Proceedings of the 37th International Conference on Machine Learning, PMLR 119:4692-4701, 2020

# Author: Hicham Janati <hicham.janati100@gmail.com>
#
# sphinx_gallery_thumbnail_number = 3

import os
from pathlib import Path

import numpy as np
import matplotlib.pyplot as plt

import ot
from ot.bregman import (barycenter, barycenter_debiased,
convolutional_barycenter2d,
convolutional_barycenter2d_debiased)


## Debiased barycenter of 1D Gaussians

n = 100  # nb bins

# bin positions
x = np.arange(n, dtype=np.float64)

# Gaussian distributions
a1 = ot.datasets.make_1D_gauss(n, m=20, s=5)  # m= mean, s= std
a2 = ot.datasets.make_1D_gauss(n, m=60, s=8)

# creating matrix A containing all distributions
A = np.vstack((a1, a2)).T
n_distributions = A.shape[1]

# loss matrix + normalization
M = ot.utils.dist0(n)
M /= M.max()

alpha = 0.2  # 0<=alpha<=1
weights = np.array([1 - alpha, alpha])

epsilons = [5e-3, 1e-2, 5e-2]

bars = [barycenter(A, M, reg, weights) for reg in epsilons]
bars_debiased = [barycenter_debiased(A, M, reg, weights) for reg in epsilons]
labels = ["Sinkhorn barycenter", "Debiased barycenter"]
colors = ["indianred", "gold"]

f, axes = plt.subplots(1, len(epsilons), tight_layout=True, sharey=True,
figsize=(12, 4), num=1)
for ax, eps, bar, bar_debiased in zip(axes, epsilons, bars, bars_debiased):
ax.plot(A[:, 0], color="k", ls="--", label="Input data", alpha=0.3)
ax.plot(A[:, 1], color="k", ls="--", alpha=0.3)
for data, label, color in zip([bar, bar_debiased], labels, colors):
ax.plot(data, color=color, label=label, lw=2)
ax.set_title(r"$\varepsilon = %.3f$" % eps)
plt.legend()
plt.show()


## Debiased barycenter of 2D images

this_file = os.path.realpath('__file__')
data_path = os.path.join(Path(this_file).parent.parent.parent, 'data')
f1 = 1 - plt.imread(os.path.join(data_path, 'heart.png'))[:, :, 2]
f2 = 1 - plt.imread(os.path.join(data_path, 'duck.png'))[:, :, 2]

A = np.asarray([f1, f2]) + 1e-2
A /= A.sum(axis=(1, 2))[:, None, None]


Display the input images

fig, axes = plt.subplots(1, 2, figsize=(7, 4), num=2)
for ax, img in zip(axes, A):
ax.imshow(img, cmap="Greys")
ax.axis("off")
fig.tight_layout()
plt.show()


## Barycenter computation and visualization

bars_sinkhorn, bars_debiased = [], []
epsilons = [5e-3, 7e-3, 1e-2]
for eps in epsilons:
bar = convolutional_barycenter2d(A, eps)
bar_debiased, log = convolutional_barycenter2d_debiased(A, eps, log=True)
bars_sinkhorn.append(bar)
bars_debiased.append(bar_debiased)

titles = ["Sinkhorn", "Debiased"]
all_bars = [bars_sinkhorn, bars_debiased]
fig, axes = plt.subplots(2, 3, figsize=(8, 6), num=3)
for jj, (method, ax_row, bars) in enumerate(zip(titles, axes, all_bars)):
for ii, (ax, img, eps) in enumerate(zip(ax_row, bars, epsilons)):
ax.imshow(img, cmap="Greys")
if jj == 0:
ax.set_title(r"$\varepsilon = %.3f$" % eps, fontsize=13)
ax.set_xticks([])
ax.set_yticks([])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
if ii == 0:
ax.set_ylabel(method, fontsize=15)
fig.tight_layout()
plt.show()


Total running time of the script: ( 0 minutes 13.032 seconds)

Gallery generated by Sphinx-Gallery