Note
Go to the end to download the full example code.
Solving Many Optimal Transport Problems in Parallel
In some situations, one may want to solve many OT problems with the same structure (same number of samples, same cost function, etc.) at the same time.
In that case using a for loop to solve the problems sequentially is inefficient. This example shows how to use the batch solvers implemented in POT to solve many problems in parallel on CPU or GPU (even more efficient on GPU).
# Author: Paul Krzakala <paul.krzakala@gmail.com>
# License: MIT License
# sphinx_gallery_thumbnail_number = 1
Computing the Cost Matrices
We want to create a batch of optimal transport problems with \(n\) samples in \(d\) dimensions.
To do this, we first need to compute the cost matrices for each problem.
Note
A straightforward approach would be to use a Python loop and
ot.dist()
.
However, this is inefficient when working with batches.
Instead, you can directly use ot.batch.dist_batch()
, which computes
all cost matrices in parallel.
import ot
import numpy as np
n_problems = 4 # nb problems/batch size
n_samples = 8 # nb samples
dim = 2 # nb dimensions
np.random.seed(0)
samples_source = np.random.randn(n_problems, n_samples, dim)
samples_target = samples_source + 0.1 * np.random.randn(n_problems, n_samples, dim)
# Naive approach
M_list = []
for i in range(n_problems):
M_list.append(
ot.dist(samples_source[i], samples_target[i])
) # List of cost matrices n_samples x n_samples
# Batched approach
M_batch = ot.dist_batch(
samples_source, samples_target
) # Array of cost matrices n_problems x n_samples x n_samples
for i in range(n_problems):
assert np.allclose(M_list[i], M_batch[i])
Solving the Problems
Once the cost matrices are computed, we can solve the corresponding optimal transport problems.
Note
One option is to solve them sequentially with a Python loop using
ot.solve()
.
This is simple but inefficient for large batches.
Instead, you can use ot.batch.solve_batch()
, which solves all
problems in parallel.
reg = 1.0
max_iter = 100
tol = 1e-3
# Naive approach
results_values_list = []
for i in range(n_problems):
res = ot.solve(M_list[i], reg=reg, max_iter=max_iter, tol=tol, reg_type="entropy")
results_values_list.append(res.value_linear)
# Batched approach
results_batch = ot.solve_batch(
M=M_batch, reg=reg, max_iter=max_iter, tol=tol, reg_type="entropy"
)
results_values_batch = results_batch.value_linear
assert np.allclose(np.array(results_values_list), results_values_batch, atol=tol * 10)
Comparing Computation Time
We now compare the runtime of the two approaches on larger problems.
Note
The speedup obtained with ot.batch
can be even more
significant when computations are performed on a GPU.
from time import perf_counter
n_problems = 128
n_samples = 8
dim = 2
reg = 10.0
max_iter = 1000
tol = 1e-3
samples_source = np.random.randn(n_problems, n_samples, dim)
samples_target = samples_source + 0.1 * np.random.randn(n_problems, n_samples, dim)
def benchmark_naive(samples_source, samples_target):
start = perf_counter()
for i in range(n_problems):
M = ot.dist(samples_source[i], samples_target[i])
res = ot.solve(M, reg=reg, max_iter=max_iter, tol=tol, reg_type="entropy")
end = perf_counter()
return end - start
def benchmark_batch(samples_source, samples_target):
start = perf_counter()
M_batch = ot.dist_batch(samples_source, samples_target)
res_batch = ot.solve_batch(
M=M_batch, reg=reg, max_iter=max_iter, tol=tol, reg_type="entropy"
)
end = perf_counter()
return end - start
time_naive = benchmark_naive(samples_source, samples_target)
time_batch = benchmark_batch(samples_source, samples_target)
print(f"Naive approach time: {time_naive:.4f} seconds")
print(f"Batched approach time: {time_batch:.4f} seconds")
Naive approach time: 0.3529 seconds
Batched approach time: 0.0109 seconds
Gromov-Wasserstein
The ot.batch
module also provides a batched Gromov-Wasserstein solver.
Note
This solver is not equivalent to calling ot.solve_gromov()
repeatedly in a loop.
Key differences:
ot.solve_gromov()
Uses the conditional gradient algorithm. Each inner iteration relies on an exact EMD solver.ot.batch.solve_gromov_batch()
Uses a proximal variant, where each inner iteration applies entropic regularization.
As a result:
ot.solve_gromov()
is usually faster on CPUot.batch.solve_gromov_batch()
is slower on CPU, but provides better objective values.
Tip
If your data is on a GPU, ot.batch.solve_gromov_batch()
is significantly faster AND provides better objective values.
from ot import solve_gromov, solve_gromov_batch
def benchmark_naive_gw(samples_source, samples_target):
start = perf_counter()
avg_value = 0
for i in range(n_problems):
C1 = ot.dist(samples_source[i], samples_source[i])
C2 = ot.dist(samples_target[i], samples_target[i])
res = solve_gromov(C1, C2, max_iter=1000, tol=tol)
avg_value += res.value
avg_value /= n_problems
end = perf_counter()
return end - start, avg_value
def benchmark_batch_gw(samples_source, samples_target):
start = perf_counter()
C1_batch = ot.dist_batch(samples_source, samples_source)
C2_batch = ot.dist_batch(samples_target, samples_target)
res_batch = solve_gromov_batch(
C1_batch, C2_batch, reg=1, max_iter=100, max_iter_inner=50, tol=tol
)
avg_value = np.mean(res_batch.value)
end = perf_counter()
return end - start, avg_value
time_naive_gw, avg_value_naive_gw = benchmark_naive_gw(samples_source, samples_target)
time_batch_gw, avg_value_batch_gw = benchmark_batch_gw(samples_source, samples_target)
print(f"{'Method':<20}{'Time (s)':<15}{'Avg Value':<15}")
print(f"{'Naive GW':<20}{time_naive_gw:<15.4f}{avg_value_naive_gw:<15.4f}")
print(f"{'Batched GW':<20}{time_batch_gw:<15.4f}{avg_value_batch_gw:<15.4f}")
Method Time (s) Avg Value
Naive GW 0.1095 0.7070
Batched GW 0.4482 0.2914
In summary: no more for loops!

Total running time of the script: (0 minutes 0.980 seconds)