Source code for ot.da

# -*- coding: utf-8 -*-
"""
Domain adaptation with optimal transport
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#         Nicolas Courty <ncourty@irisa.fr>
#         Michael Perrot <michael.perrot@univ-st-etienne.fr>
#         Nathalie Gayraud <nat.gayraud@gmail.com>
#         Ievgen Redko <ievgen.redko@univ-st-etienne.fr>
#         Eloi Tanguy <eloi.tanguy@u-paris.fr>
#
# License: MIT License

import numpy as np
import warnings

from .backend import get_backend
from .bregman import sinkhorn, jcpot_barycenter
from .lp import emd
from .utils import unif, dist, kernel, cost_normalization, label_normalization, laplacian, dots
from .utils import BaseEstimator, check_params, deprecated, labels_to_masks, list_to_array
from .unbalanced import sinkhorn_unbalanced
from .gaussian import empirical_bures_wasserstein_mapping, empirical_gaussian_gromov_wasserstein_mapping
from .optim import cg
from .optim import gcg
from .mapping import nearest_brenier_potential_fit, nearest_brenier_potential_predict_bounds, joint_OT_mapping_linear, \
    joint_OT_mapping_kernel


[docs] def sinkhorn_lpl1_mm(a, labels_a, b, M, reg, eta=0.1, numItermax=10, numInnerItermax=200, stopInnerThr=1e-9, verbose=False, log=False): r""" Solve the entropic regularization optimal transport problem with non-convex group lasso regularization The function solves the following optimization problem: .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F + \mathrm{reg} \cdot \Omega_e(\gamma) + \eta \ \Omega_g(\gamma) s.t. \ \gamma \mathbf{1} = \mathbf{a} \gamma^T \mathbf{1} = \mathbf{b} \gamma \geq 0 where : - :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix - :math:`\Omega_e` is the entropic regularization term :math:`\Omega_e (\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`\Omega_g` is the group lasso regularization term :math:`\Omega_g(\gamma)=\sum_{i,c} \|\gamma_{i,\mathcal{I}_c}\|^{1/2}_1` where :math:`\mathcal{I}_c` are the index of samples from class `c` in the source domain. - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1) The algorithm used for solving the problem is the generalized conditional gradient as proposed in :ref:`[5, 7] <references-sinkhorn-lpl1-mm>`. Parameters ---------- a : array-like (ns,) samples weights in the source domain labels_a : array-like (ns,) labels of samples in the source domain b : array-like (nt,) samples weights in the target domain M : array-like (ns,nt) loss matrix reg : float Regularization term for entropic regularization >0 eta : float, optional Regularization term for group lasso regularization >0 numItermax : int, optional Max number of iterations numInnerItermax : int, optional Max number of iterations (inner sinkhorn solver) stopInnerThr : float, optional Stop threshold on error (inner sinkhorn solver) (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns, nt) array-like Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters .. _references-sinkhorn-lpl1-mm: References ---------- .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 .. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567. See Also -------- ot.lp.emd : Unregularized OT ot.bregman.sinkhorn : Entropic regularized OT ot.optim.cg : General regularized OT """ a, labels_a, b, M = list_to_array(a, labels_a, b, M) nx = get_backend(a, labels_a, b, M) p = 0.5 epsilon = 1e-3 indices_labels = [] classes = nx.unique(labels_a) for c in classes: idxc, = nx.where(labels_a == c) indices_labels.append(idxc) W = nx.zeros(M.shape, type_as=M) for cpt in range(numItermax): Mreg = M + eta * W if log: transp, log = sinkhorn(a, b, Mreg, reg, numItermax=numInnerItermax, stopThr=stopInnerThr, log=True) else: transp = sinkhorn(a, b, Mreg, reg, numItermax=numInnerItermax, stopThr=stopInnerThr) # the transport has been computed. Check if classes are really # separated W = nx.ones(M.shape, type_as=M) for (i, c) in enumerate(classes): majs = nx.sum(transp[indices_labels[i]], axis=0) majs = p * ((majs + epsilon) ** (p - 1)) W[indices_labels[i]] = majs if log: return transp, log else: return transp
[docs] def sinkhorn_l1l2_gl(a, labels_a, b, M, reg, eta=0.1, numItermax=10, numInnerItermax=200, stopInnerThr=1e-9, eps=1e-12, verbose=False, log=False): r""" Solve the entropic regularization optimal transport problem with group lasso regularization The function solves the following optimization problem: .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F + \mathrm{reg} \cdot \Omega_e(\gamma) + \eta \ \Omega_g(\gamma) s.t. \ \gamma \mathbf{1} = \mathbf{a} \gamma^T \mathbf{1} = \mathbf{b} \gamma \geq 0 where : - :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix - :math:`\Omega_e` is the entropic regularization term :math:`\Omega_e(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`\Omega_g` is the group lasso regularization term :math:`\Omega_g(\gamma)=\sum_{i,c} \|\gamma_{i,\mathcal{I}_c}\|^2` where :math:`\mathcal{I}_c` are the index of samples from class `c` in the source domain. - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1) The algorithm used for solving the problem is the generalized conditional gradient as proposed in :ref:`[5, 7] <references-sinkhorn-l1l2-gl>`. Parameters ---------- a : array-like (ns,) samples weights in the source domain labels_a : array-like (ns,) labels of samples in the source domain b : array-like (nt,) samples in the target domain M : array-like (ns,nt) loss matrix reg : float Regularization term for entropic regularization >0 eta : float, optional Regularization term for group lasso regularization >0 numItermax : int, optional Max number of iterations numInnerItermax : int, optional Max number of iterations (inner sinkhorn solver) stopInnerThr : float, optional Stop threshold on error (inner sinkhorn solver) (>0) eps: float, optional (default=1e-12) Small value to avoid division by zero verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns, nt) array-like Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters .. _references-sinkhorn-l1l2-gl: References ---------- .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 .. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567. See Also -------- ot.optim.gcg : Generalized conditional gradient for OT problems """ a, labels_a, b, M = list_to_array(a, labels_a, b, M) nx = get_backend(a, labels_a, b, M) labels_u, labels_idx = nx.unique(labels_a, return_inverse=True) n_labels = labels_u.shape[0] unroll_labels_idx = nx.eye(n_labels, type_as=labels_u)[None, labels_idx] def f(G): G_split = nx.repeat(G.T[:, :, None], n_labels, axis=2) return nx.sum(nx.norm(G_split * unroll_labels_idx, axis=1)) def df(G): G_split = nx.repeat(G.T[:, :, None], n_labels, axis=2) * unroll_labels_idx W = nx.norm(G_split * unroll_labels_idx, axis=1, keepdims=True) G_norm = G_split / nx.clip(W, eps, None) return nx.sum(G_norm, axis=2).T return gcg(a, b, M, reg, eta, f, df, G0=None, numItermax=numItermax, numInnerItermax=numInnerItermax, stopThr=stopInnerThr, verbose=verbose, log=log)
OT_mapping_linear = deprecated(empirical_bures_wasserstein_mapping)
[docs] def emd_laplace(a, b, xs, xt, M, sim='knn', sim_param=None, reg='pos', eta=1, alpha=.5, numItermax=100, stopThr=1e-9, numInnerItermax=100000, stopInnerThr=1e-9, log=False, verbose=False): r"""Solve the optimal transport problem (OT) with Laplacian regularization .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F + \eta \cdot \Omega_\alpha(\gamma) s.t. \ \gamma \mathbf{1} = \mathbf{a} \gamma^T \mathbf{1} = \mathbf{b} \gamma \geq 0 where: - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target weights (sum to 1) - :math:`\mathbf{x_s}` and :math:`\mathbf{x_t}` are source and target samples - :math:`\mathbf{M}` is the (`ns`, `nt`) metric cost matrix - :math:`\Omega_\alpha` is the Laplacian regularization term .. math:: \Omega_\alpha = \frac{1 - \alpha}{n_s^2} \sum_{i,j} \mathbf{S^s}_{i,j} \|T(\mathbf{x}^s_i) - T(\mathbf{x}^s_j) \|^2 + \frac{\alpha}{n_t^2} \sum_{i,j} \mathbf{S^t}_{i,j} \|T(\mathbf{x}^t_i) - T(\mathbf{x}^t_j) \|^2 with :math:`\mathbf{S^s}_{i,j}, \mathbf{S^t}_{i,j}` denoting source and target similarity matrices and :math:`T(\cdot)` being a barycentric mapping. The algorithm used for solving the problem is the conditional gradient algorithm as proposed in :ref:`[5] <references-emd-laplace>`. Parameters ---------- a : array-like (ns,) samples weights in the source domain b : array-like (nt,) samples weights in the target domain xs : array-like (ns,d) samples in the source domain xt : array-like (nt,d) samples in the target domain M : array-like (ns,nt) loss matrix sim : string, optional Type of similarity ('knn' or 'gauss') used to construct the Laplacian. sim_param : int or float, optional Parameter (number of the nearest neighbors for sim='knn' or bandwidth for sim='gauss') used to compute the Laplacian. reg : string Type of Laplacian regularization eta : float Regularization term for Laplacian regularization alpha : float Regularization term for source domain's importance in regularization numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (inner emd solver) (>0) numInnerItermax : int, optional Max number of iterations (inner CG solver) stopInnerThr : float, optional Stop threshold on error (inner CG solver) (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns, nt) array-like Optimal transportation matrix for the given parameters log : dict log dictionary return only if log==True in parameters .. _references-emd-laplace: References ---------- .. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PP, no.99, pp.1-1 .. [30] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy, "Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching," in NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014. See Also -------- ot.lp.emd : Unregularized OT ot.optim.cg : General regularized OT """ if not isinstance(sim_param, (int, float, type(None))): raise ValueError( 'Similarity parameter should be an int or a float. Got {type} instead.'.format(type=type(sim_param).__name__)) a, b, xs, xt, M = list_to_array(a, b, xs, xt, M) nx = get_backend(a, b, xs, xt, M) if sim == 'gauss': if sim_param is None: sim_param = 1 / (2 * (nx.mean(dist(xs, xs, 'sqeuclidean')) ** 2)) sS = kernel(xs, xs, method=sim, sigma=sim_param) sT = kernel(xt, xt, method=sim, sigma=sim_param) elif sim == 'knn': if sim_param is None: sim_param = 3 from sklearn.neighbors import kneighbors_graph sS = nx.from_numpy(kneighbors_graph( X=nx.to_numpy(xs), n_neighbors=int(sim_param) ).toarray(), type_as=xs) sS = (sS + sS.T) / 2 sT = nx.from_numpy(kneighbors_graph( X=nx.to_numpy(xt), n_neighbors=int(sim_param) ).toarray(), type_as=xt) sT = (sT + sT.T) / 2 else: raise ValueError('Unknown similarity type {sim}. Currently supported similarity types are "knn" and "gauss".'.format(sim=sim)) lS = laplacian(sS) lT = laplacian(sT) def f(G): return ( alpha * nx.trace(dots(xt.T, G.T, lS, G, xt)) + (1 - alpha) * nx.trace(dots(xs.T, G, lT, G.T, xs)) ) ls2 = lS + lS.T lt2 = lT + lT.T xt2 = nx.dot(xt, xt.T) if reg == 'disp': Cs = -eta * alpha / xs.shape[0] * dots(ls2, xs, xt.T) Ct = -eta * (1 - alpha) / xt.shape[0] * dots(xs, xt.T, lt2) M = M + Cs + Ct def df(G): return ( alpha * dots(ls2, G, xt2) + (1 - alpha) * dots(xs, xs.T, G, lt2) ) return cg(a, b, M, reg=eta, f=f, df=df, G0=None, numItermax=numItermax, numItermaxEmd=numInnerItermax, stopThr=stopThr, stopThr2=stopInnerThr, verbose=verbose, log=log)
[docs] def distribution_estimation_uniform(X): r"""estimates a uniform distribution from an array of samples :math:`\mathbf{X}` Parameters ---------- X : array-like, shape (n_samples, n_features) The array of samples Returns ------- mu : array-like, shape (n_samples,) The uniform distribution estimated from :math:`\mathbf{X}` """ return unif(X.shape[0], type_as=X)
[docs] class BaseTransport(BaseEstimator): """Base class for OTDA objects .. note:: All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). The fit method should: - estimate a cost matrix and store it in a `cost_` attribute - estimate a coupling matrix and store it in a `coupling_` attribute - estimate distributions from source and target data and store them in `mu_s` and `mu_t` attributes - store `Xs` and `Xt` in attributes to be used later on in `transform` and `inverse_transform` methods `transform` method should always get as input a `Xs` parameter `inverse_transform` method should always get as input a `Xt` parameter `transform_labels` method should always get as input a `ys` parameter `inverse_transform_labels` method should always get as input a `yt` parameter """
[docs] def fit(self, Xs=None, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The training class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ nx = self._get_backend(Xs, ys, Xt, yt) # check the necessary inputs parameters are here if check_params(Xs=Xs, Xt=Xt): # pairwise distance self.cost_ = dist(Xs, Xt, metric=self.metric) self.cost_ = cost_normalization(self.cost_, self.norm) if (ys is not None) and (yt is not None): if self.limit_max != np.infty: self.limit_max = self.limit_max * nx.max(self.cost_) # missing_labels is a (ns, nt) matrix of {0, 1} such that # the cells (i, j) has 0 iff either ys[i] or yt[j] is masked missing_ys = (ys == -1) + nx.zeros(ys.shape, type_as=ys) missing_yt = (yt == -1) + nx.zeros(yt.shape, type_as=yt) missing_labels = missing_ys[:, None] @ missing_yt[None, :] # labels_match is a (ns, nt) matrix of {True, False} such that # the cells (i, j) has False if ys[i] != yt[i] label_match = (ys[:, None] - yt[None, :]) != 0 # cost correction is a (ns, nt) matrix of {-Inf, float, Inf} such # that he cells (i, j) has -Inf where there's no correction necessary # by 'correction' we mean setting cost to a large value when # labels do not match # we suppress potential RuntimeWarning caused by Inf multiplication # (as we explicitly cover potential NANs later) with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) cost_correction = label_match * missing_labels * self.limit_max # this operation is necessary because 0 * Inf = NAN # thus is irrelevant when limit_max is finite cost_correction = nx.nan_to_num(cost_correction, -np.infty) self.cost_ = nx.maximum(self.cost_, cost_correction) # distribution estimation self.mu_s = self.distribution_estimation(Xs) self.mu_t = self.distribution_estimation(Xt) # store arrays of samples self.xs_ = Xs self.xt_ = Xt return self
[docs] def fit_transform(self, Xs=None, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` and transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels for training samples Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- transp_Xs : array-like, shape (n_source_samples, n_features) The source samples samples. """ return self.fit(Xs, ys, Xt, yt).transform(Xs, ys, Xt, yt)
[docs] def transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128): r"""Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The source input samples. ys : array-like, shape (n_source_samples,) The class labels for source samples Xt : array-like, shape (n_target_samples, n_features) The target input samples. yt : array-like, shape (n_target_samples,) The class labels for target. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label batch_size : int, optional (default=128) The batch size for out of sample inverse transform Returns ------- transp_Xs : array-like, shape (n_source_samples, n_features) The transport source samples. """ nx = self.nx # check the necessary inputs parameters are here if check_params(Xs=Xs): if nx.array_equal(self.xs_, Xs): # perform standard barycentric mapping transp = self.coupling_ / nx.sum(self.coupling_, axis=1)[:, None] # set nans to 0 transp = nx.nan_to_num(transp, nan=0, posinf=0, neginf=0) # compute transported samples transp_Xs = nx.dot(transp, self.xt_) else: # perform out of sample mapping indices = nx.arange(Xs.shape[0]) batch_ind = [ indices[i:i + batch_size] for i in range(0, len(indices), batch_size)] transp_Xs = [] for bi in batch_ind: # get the nearest neighbor in the source domain D0 = dist(Xs[bi], self.xs_) idx = nx.argmin(D0, axis=1) # transport the source samples transp = self.coupling_ / nx.sum(self.coupling_, axis=1)[:, None] transp = nx.nan_to_num(transp, nan=0, posinf=0, neginf=0) transp_Xs_ = nx.dot(transp, self.xt_) # define the transported points transp_Xs_ = transp_Xs_[idx, :] + Xs[bi] - self.xs_[idx, :] transp_Xs.append(transp_Xs_) transp_Xs = nx.concatenate(transp_Xs, axis=0) return transp_Xs
[docs] def transform_labels(self, ys=None): r"""Propagate source labels :math:`\mathbf{y_s}` to obtain estimated target labels as in :ref:`[27] <references-basetransport-transform-labels>`. Parameters ---------- ys : array-like, shape (n_source_samples,) The source class labels Returns ------- transp_ys : array-like, shape (n_target_samples, nb_classes) Estimated soft target labels. .. _references-basetransport-transform-labels: References ---------- .. [27] Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia "Optimal transport for multi-source domain adaptation under target shift", International Conference on Artificial Intelligence and Statistics (AISTATS), 2019. """ nx = self.nx # check the necessary inputs parameters are here if check_params(ys=ys): # perform label propagation transp = self.coupling_ / nx.sum(self.coupling_, axis=0)[None, :] # set nans to 0 transp = nx.nan_to_num(transp, nan=0, posinf=0, neginf=0) # compute propagated labels labels = label_normalization(ys) masks = labels_to_masks(labels, nx=nx, type_as=transp) transp_ys = nx.dot(masks.T, transp) return transp_ys.T
[docs] def inverse_transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128): r"""Transports target samples :math:`\mathbf{X_t}` onto source samples :math:`\mathbf{X_s}` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The source input samples. ys : array-like, shape (n_source_samples,) The source class labels Xt : array-like, shape (n_target_samples, n_features) The target input samples. yt : array-like, shape (n_target_samples,) The target class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label batch_size : int, optional (default=128) The batch size for out of sample inverse transform Returns ------- transp_Xt : array-like, shape (n_source_samples, n_features) The transported target samples. """ nx = self.nx # check the necessary inputs parameters are here if check_params(Xt=Xt): if nx.array_equal(self.xt_, Xt): # perform standard barycentric mapping transp_ = self.coupling_.T / nx.sum(self.coupling_, 0)[:, None] # set nans to 0 transp_ = nx.nan_to_num(transp_, nan=0, posinf=0, neginf=0) # compute transported samples transp_Xt = nx.dot(transp_, self.xs_) else: # perform out of sample mapping indices = nx.arange(Xt.shape[0]) batch_ind = [ indices[i:i + batch_size] for i in range(0, len(indices), batch_size)] transp_Xt = [] for bi in batch_ind: D0 = dist(Xt[bi], self.xt_) idx = nx.argmin(D0, axis=1) # transport the target samples transp_ = self.coupling_.T / nx.sum(self.coupling_, 0)[:, None] transp_ = nx.nan_to_num(transp_, nan=0, posinf=0, neginf=0) transp_Xt_ = nx.dot(transp_, self.xs_) # define the transported points transp_Xt_ = transp_Xt_[idx, :] + Xt[bi] - self.xt_[idx, :] transp_Xt.append(transp_Xt_) transp_Xt = nx.concatenate(transp_Xt, axis=0) return transp_Xt
[docs] def inverse_transform_labels(self, yt=None): r"""Propagate target labels :math:`\mathbf{y_t}` to obtain estimated source labels :math:`\mathbf{y_s}` Parameters ---------- yt : array-like, shape (n_target_samples,) Returns ------- transp_ys : array-like, shape (n_source_samples, nb_classes) Estimated soft source labels. """ nx = self.nx # check the necessary inputs parameters are here if check_params(yt=yt): # perform label propagation transp = self.coupling_ / nx.sum(self.coupling_, 1)[:, None] # set nans to 0 transp = nx.nan_to_num(transp, nan=0, posinf=0, neginf=0) # compute propagated labels labels = label_normalization(yt) masks = labels_to_masks(labels, nx=nx, type_as=transp) transp_ys = nx.dot(masks.T, transp.T) return transp_ys.T
[docs] class LinearTransport(BaseTransport): r""" OT linear operator between empirical distributions The function estimates the optimal linear operator that aligns the two empirical distributions. This is equivalent to estimating the closed form mapping between two Gaussian distributions :math:`\mathcal{N}(\mu_s,\Sigma_s)` and :math:`\mathcal{N}(\mu_t,\Sigma_t)` as proposed in :ref:`[14] <references-lineartransport>` and discussed in remark 2.29 in :ref:`[15] <references-lineartransport>`. The linear operator from source to target :math:`M` .. math:: M(\mathbf{x})= \mathbf{A} \mathbf{x} + \mathbf{b} where : .. math:: \mathbf{A} &= \Sigma_s^{-1/2} \left(\Sigma_s^{1/2}\Sigma_t\Sigma_s^{1/2} \right)^{1/2} \Sigma_s^{-1/2} \mathbf{b} &= \mu_t - \mathbf{A} \mu_s Parameters ---------- reg : float,optional regularization added to the daigonals of covariances (>0) bias: boolean, optional estimate bias :math:`\mathbf{b}` else :math:`\mathbf{b} = 0` (default:True) log : bool, optional record log if True .. _references-lineartransport: References ---------- .. [14] Knott, M. and Smith, C. S. "On the optimal mapping of distributions", Journal of Optimization Theory and Applications Vol 43, 1984 .. [15] Peyré, G., & Cuturi, M. (2017). "Computational Optimal Transport", 2018. """ def __init__(self, reg=1e-8, bias=True, log=False, distribution_estimation=distribution_estimation_uniform): self.bias = bias self.log = log self.reg = reg self.distribution_estimation = distribution_estimation
[docs] def fit(self, Xs=None, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ nx = self._get_backend(Xs, ys, Xt, yt) self.nx = nx self.mu_s = self.distribution_estimation(Xs) self.mu_t = self.distribution_estimation(Xt) # coupling estimation returned_ = empirical_bures_wasserstein_mapping(Xs, Xt, reg=self.reg, ws=nx.reshape(self.mu_s, (-1, 1)), wt=nx.reshape(self.mu_t, (-1, 1)), bias=self.bias, log=self.log) # deal with the value of log if self.log: self.A_, self.B_, self.log_ = returned_ else: self.A_, self.B_, = returned_ self.log_ = dict() # re compute inverse mapping self.A1_ = nx.inv(self.A_) self.B1_ = -nx.dot(self.B_, self.A1_) return self
[docs] def transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128): r"""Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label batch_size : int, optional (default=128) The batch size for out of sample inverse transform Returns ------- transp_Xs : array-like, shape (n_source_samples, n_features) The transport source samples. """ nx = self.nx # check the necessary inputs parameters are here if check_params(Xs=Xs): transp_Xs = nx.dot(Xs, self.A_) + self.B_ return transp_Xs
[docs] def inverse_transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128): r"""Transports target samples :math:`\mathbf{X_t}` onto source samples :math:`\mathbf{X_s}` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label batch_size : int, optional (default=128) The batch size for out of sample inverse transform Returns ------- transp_Xt : array-like, shape (n_source_samples, n_features) The transported target samples. """ nx = self.nx # check the necessary inputs parameters are here if check_params(Xt=Xt): transp_Xt = nx.dot(Xt, self.A1_) + self.B1_ return transp_Xt
[docs] class LinearGWTransport(LinearTransport): r""" OT Gaussian Gromov-Wasserstein linear operator between empirical distributions The function estimates the optimal linear operator that aligns the two empirical distributions optimally wrt the Gromov-Wasserstein distance. This is equivalent to estimating the closed form mapping between two Gaussian distributions :math:`\mathcal{N}(\mu_s,\Sigma_s)` and :math:`\mathcal{N}(\mu_t,\Sigma_t)` as proposed in :ref:`[57] <references-lineargwtransport>`. The linear operator from source to target :math:`M` .. math:: M(\mathbf{x})= \mathbf{A} \mathbf{x} + \mathbf{b} where the matrix :math:`\mathbf{A}` and the vector :math:`\mathbf{b}` are defined in :ref:`[57] <references-lineargwtransport>`. Parameters ---------- sign_eigs : array-like (n_features), str, optional sign of the eigenvalues of the mapping matrix, by default all signs will be positive. If 'skewness' is provided, the sign of the eigenvalues is selected as the product of the sign of the skewness of the projected data. log : bool, optional record log if True .. _references-lineargwtransport: References ---------- .. [57] Delon, J., Desolneux, A., & Salmona, A. (2022). Gromov–Wasserstein distances between Gaussian distributions. Journal of Applied Probability, 59(4), 1178-1198. """ def __init__(self, log=False, sign_eigs=None, distribution_estimation=distribution_estimation_uniform): self.sign_eigs = sign_eigs self.log = log self.distribution_estimation = distribution_estimation
[docs] def fit(self, Xs=None, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ nx = self._get_backend(Xs, ys, Xt, yt) self.nx = nx self.mu_s = self.distribution_estimation(Xs) self.mu_t = self.distribution_estimation(Xt) # coupling estimation returned_ = empirical_gaussian_gromov_wasserstein_mapping(Xs, Xt, ws=self.mu_s[:, None], wt=self.mu_t[:, None], sign_eigs=self.sign_eigs, log=self.log) # deal with the value of log if self.log: self.A_, self.B_, self.log_ = returned_ else: self.A_, self.B_, = returned_ self.log_ = dict() # re compute inverse mapping returned_1_ = empirical_gaussian_gromov_wasserstein_mapping(Xt, Xs, ws=self.mu_t[:, None], wt=self.mu_s[:, None], sign_eigs=self.sign_eigs, log=self.log) if self.log: self.A1_, self.B1_, self.log_1_ = returned_1_ else: self.A1_, self.B1_, = returned_1_ self.log_ = dict() return self
[docs] class SinkhornTransport(BaseTransport): """Domain Adaptation OT method based on Sinkhorn Algorithm Parameters ---------- reg_e : float, optional (default=1) Entropic regularization parameter max_iter : int, float, optional (default=1000) The minimum number of iteration before stopping the optimization algorithm if it has not converged tol : float, optional (default=10e-9) The precision required to stop the optimization algorithm. verbose : bool, optional (default=False) Controls the verbosity of the optimization algorithm log : int, optional (default=False) Controls the logs of the optimization algorithm metric : string, optional (default="sqeuclidean") The ground metric for the Wasserstein problem norm : string, optional (default=None) If given, normalize the ground metric to avoid numerical errors that can occur with large metric values. distribution_estimation : callable, optional (defaults to the uniform) The kind of distribution estimation to employ out_of_sample_map : string, optional (default="ferradans") The kind of out of sample mapping to apply to transport samples from a domain into another one. Currently the only possible option is "ferradans" which uses the method proposed in :ref:`[6] <references-sinkhorntransport>`. limit_max: float, optional (default=np.infty) Controls the semi supervised mode. Transport between labeled source and target samples of different classes will exhibit an cost defined by this variable Attributes ---------- coupling_ : array-like, shape (n_source_samples, n_target_samples) The optimal coupling log_ : dictionary The dictionary of log, empty dict if parameter log is not True .. _references-sinkhorntransport: References ---------- .. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 .. [2] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. """ def __init__(self, reg_e=1., method="sinkhorn", max_iter=1000, tol=10e-9, verbose=False, log=False, metric="sqeuclidean", norm=None, distribution_estimation=distribution_estimation_uniform, out_of_sample_map='ferradans', limit_max=np.infty): self.reg_e = reg_e self.method = method self.max_iter = max_iter self.tol = tol self.verbose = verbose self.log = log self.metric = metric self.norm = norm self.limit_max = limit_max self.distribution_estimation = distribution_estimation self.out_of_sample_map = out_of_sample_map
[docs] def fit(self, Xs=None, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ super(SinkhornTransport, self).fit(Xs, ys, Xt, yt) # coupling estimation returned_ = sinkhorn( a=self.mu_s, b=self.mu_t, M=self.cost_, reg=self.reg_e, method=self.method, numItermax=self.max_iter, stopThr=self.tol, verbose=self.verbose, log=self.log) # deal with the value of log if self.log: self.coupling_, self.log_ = returned_ else: self.coupling_ = returned_ self.log_ = dict() return self
[docs] class EMDTransport(BaseTransport): """Domain Adaptation OT method based on Earth Mover's Distance Parameters ---------- metric : string, optional (default="sqeuclidean") The ground metric for the Wasserstein problem norm : string, optional (default=None) If given, normalize the ground metric to avoid numerical errors that can occur with large metric values. log : int, optional (default=False) Controls the logs of the optimization algorithm distribution_estimation : callable, optional (defaults to the uniform) The kind of distribution estimation to employ out_of_sample_map : string, optional (default="ferradans") The kind of out of sample mapping to apply to transport samples from a domain into another one. Currently the only possible option is "ferradans" which uses the method proposed in :ref:`[6] <references-emdtransport>`. limit_max: float, optional (default=10) Controls the semi supervised mode. Transport between labeled source and target samples of different classes will exhibit an infinite cost (10 times the maximum value of the cost matrix) max_iter : int, optional (default=100000) The maximum number of iterations before stopping the optimization algorithm if it has not converged. Attributes ---------- coupling_ : array-like, shape (n_source_samples, n_target_samples) The optimal coupling .. _references-emdtransport: References ---------- .. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. """ def __init__(self, metric="sqeuclidean", norm=None, log=False, distribution_estimation=distribution_estimation_uniform, out_of_sample_map='ferradans', limit_max=10, max_iter=100000): self.metric = metric self.norm = norm self.log = log self.limit_max = limit_max self.distribution_estimation = distribution_estimation self.out_of_sample_map = out_of_sample_map self.max_iter = max_iter
[docs] def fit(self, Xs, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ super(EMDTransport, self).fit(Xs, ys, Xt, yt) returned_ = emd( a=self.mu_s, b=self.mu_t, M=self.cost_, numItermax=self.max_iter, log=self.log) # coupling estimation if self.log: self.coupling_, self.log_ = returned_ else: self.coupling_ = returned_ self.log_ = dict() return self
[docs] class SinkhornLpl1Transport(BaseTransport): r"""Domain Adaptation OT method based on sinkhorn algorithm + LpL1 class regularization. Parameters ---------- reg_e : float, optional (default=1) Entropic regularization parameter reg_cl : float, optional (default=0.1) Class regularization parameter max_iter : int, float, optional (default=10) The minimum number of iteration before stopping the optimization algorithm if it has not converged max_inner_iter : int, float, optional (default=200) The number of iteration in the inner loop log : bool, optional (default=False) Controls the logs of the optimization algorithm tol : float, optional (default=10e-9) Stop threshold on error (inner sinkhorn solver) (>0) verbose : bool, optional (default=False) Controls the verbosity of the optimization algorithm metric : string, optional (default="sqeuclidean") The ground metric for the Wasserstein problem norm : string, optional (default=None) If given, normalize the ground metric to avoid numerical errors that can occur with large metric values. distribution_estimation : callable, optional (defaults to the uniform) The kind of distribution estimation to employ out_of_sample_map : string, optional (default="ferradans") The kind of out of sample mapping to apply to transport samples from a domain into another one. Currently the only possible option is "ferradans" which uses the method proposed in :ref:`[6] <references-sinkhornlpl1transport>`. limit_max: float, optional (default=np.infty) Controls the semi supervised mode. Transport between labeled source and target samples of different classes will exhibit a cost defined by limit_max. Attributes ---------- coupling_ : array-like, shape (n_source_samples, n_target_samples) The optimal coupling .. _references-sinkhornlpl1transport: References ---------- .. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 .. [2] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567. .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. """ def __init__(self, reg_e=1., reg_cl=0.1, max_iter=10, max_inner_iter=200, log=False, tol=10e-9, verbose=False, metric="sqeuclidean", norm=None, distribution_estimation=distribution_estimation_uniform, out_of_sample_map='ferradans', limit_max=np.infty): self.reg_e = reg_e self.reg_cl = reg_cl self.max_iter = max_iter self.max_inner_iter = max_inner_iter self.tol = tol self.log = log self.verbose = verbose self.metric = metric self.norm = norm self.distribution_estimation = distribution_estimation self.out_of_sample_map = out_of_sample_map self.limit_max = limit_max
[docs] def fit(self, Xs, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ # check the necessary inputs parameters are here if check_params(Xs=Xs, Xt=Xt, ys=ys): super(SinkhornLpl1Transport, self).fit(Xs, ys, Xt, yt) returned_ = sinkhorn_lpl1_mm( a=self.mu_s, labels_a=ys, b=self.mu_t, M=self.cost_, reg=self.reg_e, eta=self.reg_cl, numItermax=self.max_iter, numInnerItermax=self.max_inner_iter, stopInnerThr=self.tol, verbose=self.verbose, log=self.log) # deal with the value of log if self.log: self.coupling_, self.log_ = returned_ else: self.coupling_ = returned_ self.log_ = dict() return self
[docs] class EMDLaplaceTransport(BaseTransport): """Domain Adaptation OT method based on Earth Mover's Distance with Laplacian regularization Parameters ---------- reg_type : string optional (default='pos') Type of the regularization term: 'pos' and 'disp' for regularization term defined in :ref:`[2] <references-emdlaplacetransport>` and :ref:`[6] <references-emdlaplacetransport>`, respectively. reg_lap : float, optional (default=1) Laplacian regularization parameter reg_src : float, optional (default=0.5) Source relative importance in regularization metric : string, optional (default="sqeuclidean") The ground metric for the Wasserstein problem norm : string, optional (default=None) If given, normalize the ground metric to avoid numerical errors that can occur with large metric values. similarity : string, optional (default="knn") The similarity to use either knn or gaussian similarity_param : int or float, optional (default=None) Parameter for the similarity: number of nearest neighbors or bandwidth if similarity="knn" or "gaussian", respectively. If None is provided, it is set to 3 or the average pairwise squared Euclidean distance, respectively. max_iter : int, optional (default=100) Max number of BCD iterations tol : float, optional (default=1e-5) Stop threshold on relative loss decrease (>0) max_inner_iter : int, optional (default=10) Max number of iterations (inner CG solver) inner_tol : float, optional (default=1e-6) Stop threshold on error (inner CG solver) (>0) log : int, optional (default=False) Controls the logs of the optimization algorithm distribution_estimation : callable, optional (defaults to the uniform) The kind of distribution estimation to employ out_of_sample_map : string, optional (default="ferradans") The kind of out of sample mapping to apply to transport samples from a domain into another one. Currently the only possible option is "ferradans" which uses the method proposed in :ref:`[6] <references-emdlaplacetransport>`. Attributes ---------- coupling_ : array-like, shape (n_source_samples, n_target_samples) The optimal coupling .. _references-emdlaplacetransport: References ---------- .. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 .. [2] R. Flamary, N. Courty, D. Tuia, A. Rakotomamonjy, "Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching," in NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014. .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. """ def __init__(self, reg_type='pos', reg_lap=1., reg_src=1., metric="sqeuclidean", norm=None, similarity="knn", similarity_param=None, max_iter=100, tol=1e-9, max_inner_iter=100000, inner_tol=1e-9, log=False, verbose=False, distribution_estimation=distribution_estimation_uniform, out_of_sample_map='ferradans'): self.reg = reg_type self.reg_lap = reg_lap self.reg_src = reg_src self.metric = metric self.norm = norm self.similarity = similarity self.sim_param = similarity_param self.max_iter = max_iter self.tol = tol self.max_inner_iter = max_inner_iter self.inner_tol = inner_tol self.log = log self.verbose = verbose self.distribution_estimation = distribution_estimation self.out_of_sample_map = out_of_sample_map
[docs] def fit(self, Xs, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ super(EMDLaplaceTransport, self).fit(Xs, ys, Xt, yt) returned_ = emd_laplace(a=self.mu_s, b=self.mu_t, xs=self.xs_, xt=self.xt_, M=self.cost_, sim=self.similarity, sim_param=self.sim_param, reg=self.reg, eta=self.reg_lap, alpha=self.reg_src, numItermax=self.max_iter, stopThr=self.tol, numInnerItermax=self.max_inner_iter, stopInnerThr=self.inner_tol, log=self.log, verbose=self.verbose) # coupling estimation if self.log: self.coupling_, self.log_ = returned_ else: self.coupling_ = returned_ self.log_ = dict() return self
[docs] class SinkhornL1l2Transport(BaseTransport): """Domain Adaptation OT method based on sinkhorn algorithm + L1L2 class regularization. Parameters ---------- reg_e : float, optional (default=1) Entropic regularization parameter reg_cl : float, optional (default=0.1) Class regularization parameter max_iter : int, float, optional (default=10) The minimum number of iteration before stopping the optimization algorithm if it has not converged max_inner_iter : int, float, optional (default=200) The number of iteration in the inner loop tol : float, optional (default=10e-9) Stop threshold on error (inner sinkhorn solver) (>0) verbose : bool, optional (default=False) Controls the verbosity of the optimization algorithm log : bool, optional (default=False) Controls the logs of the optimization algorithm metric : string, optional (default="sqeuclidean") The ground metric for the Wasserstein problem norm : string, optional (default=None) If given, normalize the ground metric to avoid numerical errors that can occur with large metric values. distribution_estimation : callable, optional (defaults to the uniform) The kind of distribution estimation to employ out_of_sample_map : string, optional (default="ferradans") The kind of out of sample mapping to apply to transport samples from a domain into another one. Currently the only possible option is "ferradans" which uses the method proposed in :ref:`[6] <references-sinkhornl1l2transport>`. limit_max: float, optional (default=10) Controls the semi supervised mode. Transport between labeled source and target samples of different classes will exhibit an infinite cost (10 times the maximum value of the cost matrix) Attributes ---------- coupling_ : array-like, shape (n_source_samples, n_target_samples) The optimal coupling log_ : dictionary The dictionary of log, empty dict if parameter log is not True .. _references-sinkhornl1l2transport: References ---------- .. [1] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, "Optimal Transport for Domain Adaptation," in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1 .. [2] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567. .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. """ def __init__(self, reg_e=1., reg_cl=0.1, max_iter=10, max_inner_iter=200, tol=10e-9, verbose=False, log=False, metric="sqeuclidean", norm=None, distribution_estimation=distribution_estimation_uniform, out_of_sample_map='ferradans', limit_max=10): self.reg_e = reg_e self.reg_cl = reg_cl self.max_iter = max_iter self.max_inner_iter = max_inner_iter self.tol = tol self.verbose = verbose self.log = log self.metric = metric self.norm = norm self.distribution_estimation = distribution_estimation self.out_of_sample_map = out_of_sample_map self.limit_max = limit_max
[docs] def fit(self, Xs, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ # check the necessary inputs parameters are here if check_params(Xs=Xs, Xt=Xt, ys=ys): super(SinkhornL1l2Transport, self).fit(Xs, ys, Xt, yt) returned_ = sinkhorn_l1l2_gl( a=self.mu_s, labels_a=ys, b=self.mu_t, M=self.cost_, reg=self.reg_e, eta=self.reg_cl, numItermax=self.max_iter, numInnerItermax=self.max_inner_iter, stopInnerThr=self.tol, verbose=self.verbose, log=self.log) # deal with the value of log if self.log: self.coupling_, self.log_ = returned_ else: self.coupling_ = returned_ self.log_ = dict() return self
[docs] class MappingTransport(BaseEstimator): """MappingTransport: DA methods that aims at jointly estimating a optimal transport coupling and the associated mapping Parameters ---------- mu : float, optional (default=1) Weight for the linear OT loss (>0) eta : float, optional (default=0.001) Regularization term for the linear mapping `L` (>0) bias : bool, optional (default=False) Estimate linear mapping with constant bias metric : string, optional (default="sqeuclidean") The ground metric for the Wasserstein problem norm : string, optional (default=None) If given, normalize the ground metric to avoid numerical errors that can occur with large metric values. kernel : string, optional (default="linear") The kernel to use either linear or gaussian sigma : float, optional (default=1) The gaussian kernel parameter max_iter : int, optional (default=100) Max number of BCD iterations tol : float, optional (default=1e-5) Stop threshold on relative loss decrease (>0) max_inner_iter : int, optional (default=10) Max number of iterations (inner CG solver) inner_tol : float, optional (default=1e-6) Stop threshold on error (inner CG solver) (>0) log : bool, optional (default=False) record log if True verbose : bool, optional (default=False) Print information along iterations verbose2 : bool, optional (default=False) Print information along iterations Attributes ---------- coupling_ : array-like, shape (n_source_samples, n_target_samples) The optimal coupling mapping_ : The associated mapping - array-like, shape (`n_features` (+ 1), `n_features`), (if bias) for kernel == linear - array-like, shape (`n_source_samples` (+ 1), `n_features`), (if bias) for kernel == gaussian log_ : dictionary The dictionary of log, empty dict if parameter log is not True References ---------- .. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for discrete optimal transport", Neural Information Processing Systems (NIPS), 2016. """ def __init__(self, mu=1, eta=0.001, bias=False, metric="sqeuclidean", norm=None, kernel="linear", sigma=1, max_iter=100, tol=1e-5, max_inner_iter=10, inner_tol=1e-6, log=False, verbose=False, verbose2=False): self.metric = metric self.norm = norm self.mu = mu self.eta = eta self.bias = bias self.kernel = kernel self.sigma = sigma self.max_iter = max_iter self.tol = tol self.max_inner_iter = max_inner_iter self.inner_tol = inner_tol self.log = log self.verbose = verbose self.verbose2 = verbose2
[docs] def fit(self, Xs=None, ys=None, Xt=None, yt=None): r"""Builds an optimal coupling and estimates the associated mapping from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self """ self._get_backend(Xs, ys, Xt, yt) # check the necessary inputs parameters are here if check_params(Xs=Xs, Xt=Xt): self.xs_ = Xs self.xt_ = Xt if self.kernel == "linear": returned_ = joint_OT_mapping_linear( Xs, Xt, mu=self.mu, eta=self.eta, bias=self.bias, verbose=self.verbose, verbose2=self.verbose2, numItermax=self.max_iter, numInnerItermax=self.max_inner_iter, stopThr=self.tol, stopInnerThr=self.inner_tol, log=self.log) elif self.kernel == "gaussian": returned_ = joint_OT_mapping_kernel( Xs, Xt, mu=self.mu, eta=self.eta, bias=self.bias, sigma=self.sigma, verbose=self.verbose, verbose2=self.verbose, numItermax=self.max_iter, numInnerItermax=self.max_inner_iter, stopInnerThr=self.inner_tol, stopThr=self.tol, log=self.log) # deal with the value of log if self.log: self.coupling_, self.mapping_, self.log_ = returned_ else: self.coupling_, self.mapping_ = returned_ self.log_ = dict() return self
[docs] def transform(self, Xs): r"""Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. Returns ------- transp_Xs : array-like, shape (n_source_samples, n_features) The transport source samples. """ nx = self.nx # check the necessary inputs parameters are here if check_params(Xs=Xs): if nx.array_equal(self.xs_, Xs): # perform standard barycentric mapping transp = self.coupling_ / nx.sum(self.coupling_, 1)[:, None] # set nans to 0 transp[~ nx.isfinite(transp)] = 0 # compute transported samples transp_Xs = nx.dot(transp, self.xt_) else: if self.kernel == "gaussian": K = kernel(Xs, self.xs_, method=self.kernel, sigma=self.sigma) elif self.kernel == "linear": K = Xs if self.bias: K = nx.concatenate( [K, nx.ones((Xs.shape[0], 1), type_as=K)], axis=1 ) transp_Xs = nx.dot(K, self.mapping_) return transp_Xs
[docs] class UnbalancedSinkhornTransport(BaseTransport): """Domain Adaptation unbalanced OT method based on sinkhorn algorithm Parameters ---------- reg_e : float, optional (default=1) Entropic regularization parameter reg_m : float, optional (default=0.1) Mass regularization parameter method : str method used for the solver either 'sinkhorn', 'sinkhorn_stabilized' or 'sinkhorn_epsilon_scaling', see those function for specific parameters max_iter : int, float, optional (default=10) The minimum number of iteration before stopping the optimization algorithm if it has not converged tol : float, optional (default=10e-9) Stop threshold on error (inner sinkhorn solver) (>0) verbose : bool, optional (default=False) Controls the verbosity of the optimization algorithm log : bool, optional (default=False) Controls the logs of the optimization algorithm metric : string, optional (default="sqeuclidean") The ground metric for the Wasserstein problem norm : string, optional (default=None) If given, normalize the ground metric to avoid numerical errors that can occur with large metric values. distribution_estimation : callable, optional (defaults to the uniform) The kind of distribution estimation to employ out_of_sample_map : string, optional (default="ferradans") The kind of out of sample mapping to apply to transport samples from a domain into another one. Currently the only possible option is "ferradans" which uses the method proposed in :ref:`[6] <references-unbalancedsinkhorntransport>`. limit_max: float, optional (default=10) Controls the semi supervised mode. Transport between labeled source and target samples of different classes will exhibit an infinite cost (10 times the maximum value of the cost matrix) Attributes ---------- coupling_ : array-like, shape (n_source_samples, n_target_samples) The optimal coupling log_ : dictionary The dictionary of log, empty dict if parameter log is not True .. _references-unbalancedsinkhorntransport: References ---------- .. [1] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816. .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. """ def __init__(self, reg_e=1., reg_m=0.1, method='sinkhorn', max_iter=10, tol=1e-9, verbose=False, log=False, metric="sqeuclidean", norm=None, distribution_estimation=distribution_estimation_uniform, out_of_sample_map='ferradans', limit_max=10): self.reg_e = reg_e self.reg_m = reg_m self.method = method self.max_iter = max_iter self.tol = tol self.verbose = verbose self.log = log self.metric = metric self.norm = norm self.distribution_estimation = distribution_estimation self.out_of_sample_map = out_of_sample_map self.limit_max = limit_max
[docs] def fit(self, Xs, ys=None, Xt=None, yt=None): r"""Build a coupling matrix from source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : array-like, shape (n_source_samples, n_features) The training input samples. ys : array-like, shape (n_source_samples,) The class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ # check the necessary inputs parameters are here if check_params(Xs=Xs, Xt=Xt): super(UnbalancedSinkhornTransport, self).fit(Xs, ys, Xt, yt) returned_ = sinkhorn_unbalanced( a=self.mu_s, b=self.mu_t, M=self.cost_, reg=self.reg_e, reg_m=self.reg_m, method=self.method, numItermax=self.max_iter, stopThr=self.tol, verbose=self.verbose, log=self.log) # deal with the value of log if self.log: self.coupling_, self.log_ = returned_ else: self.coupling_ = returned_ self.log_ = dict() return self
[docs] class JCPOTTransport(BaseTransport): """Domain Adaptation OT method for multi-source target shift based on Wasserstein barycenter algorithm. Parameters ---------- reg_e : float, optional (default=1) Entropic regularization parameter max_iter : int, float, optional (default=10) The minimum number of iteration before stopping the optimization algorithm if it has not converged tol : float, optional (default=10e-9) Stop threshold on error (inner sinkhorn solver) (>0) verbose : bool, optional (default=False) Controls the verbosity of the optimization algorithm log : bool, optional (default=False) Controls the logs of the optimization algorithm metric : string, optional (default="sqeuclidean") The ground metric for the Wasserstein problem norm : string, optional (default=None) If given, normalize the ground metric to avoid numerical errors that can occur with large metric values. distribution_estimation : callable, optional (defaults to the uniform) The kind of distribution estimation to employ out_of_sample_map : string, optional (default="ferradans") The kind of out of sample mapping to apply to transport samples from a domain into another one. Currently the only possible option is "ferradans" which uses the method proposed in :ref:`[6] <references-jcpottransport>`. Attributes ---------- coupling_ : list of array-like objects, shape K x (n_source_samples, n_target_samples) A set of optimal couplings between each source domain and the target domain proportions_ : array-like, shape (n_classes,) Estimated class proportions in the target domain log_ : dictionary The dictionary of log, empty dict if parameter log is not True .. _references-jcpottransport: References ---------- .. [1] Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia "Optimal transport for multi-source domain adaptation under target shift", International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 89, p.849-858, 2019. .. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. """ def __init__(self, reg_e=.1, max_iter=10, tol=10e-9, verbose=False, log=False, metric="sqeuclidean", out_of_sample_map='ferradans'): self.reg_e = reg_e self.max_iter = max_iter self.tol = tol self.verbose = verbose self.log = log self.metric = metric self.out_of_sample_map = out_of_sample_map
[docs] def fit(self, Xs, ys=None, Xt=None, yt=None): r"""Building coupling matrices from a list of source and target sets of samples :math:`(\mathbf{X_s}, \mathbf{y_s})` and :math:`(\mathbf{X_t}, \mathbf{y_t})` Parameters ---------- Xs : list of K array-like objects, shape K x (nk_source_samples, n_features) A list of the training input samples. ys : list of K array-like objects, shape K x (nk_source_samples,) A list of the class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label Returns ------- self : object Returns self. """ self._get_backend(*Xs, *ys, Xt, yt) # check the necessary inputs parameters are here if check_params(Xs=Xs, Xt=Xt, ys=ys): self.xs_ = Xs self.xt_ = Xt returned_ = jcpot_barycenter(Xs=Xs, Ys=ys, Xt=Xt, reg=self.reg_e, metric=self.metric, distrinumItermax=self.max_iter, stopThr=self.tol, verbose=self.verbose, log=True) self.coupling_ = returned_[1]['gamma'] # deal with the value of log if self.log: self.proportions_, self.log_ = returned_ else: self.proportions_ = returned_ self.log_ = dict() return self
[docs] def transform(self, Xs=None, ys=None, Xt=None, yt=None, batch_size=128): r"""Transports source samples :math:`\mathbf{X_s}` onto target ones :math:`\mathbf{X_t}` Parameters ---------- Xs : list of K array-like objects, shape K x (nk_source_samples, n_features) A list of the training input samples. ys : list of K array-like objects, shape K x (nk_source_samples,) A list of the class labels Xt : array-like, shape (n_target_samples, n_features) The training input samples. yt : array-like, shape (n_target_samples,) The class labels. If some target samples are unlabelled, fill the :math:`\mathbf{y_t}`'s elements with -1. Warning: Note that, due to this convention -1 cannot be used as a class label batch_size : int, optional (default=128) The batch size for out of sample inverse transform """ nx = self.nx transp_Xs = [] # check the necessary inputs parameters are here if check_params(Xs=Xs): if all([nx.allclose(x, y) for x, y in zip(self.xs_, Xs)]): # perform standard barycentric mapping for each source domain for coupling in self.coupling_: transp = coupling / nx.sum(coupling, 1)[:, None] # set nans to 0 transp[~ nx.isfinite(transp)] = 0 # compute transported samples transp_Xs.append(nx.dot(transp, self.xt_)) else: # perform out of sample mapping indices = nx.arange(Xs.shape[0]) batch_ind = [ indices[i:i + batch_size] for i in range(0, len(indices), batch_size)] transp_Xs = [] for bi in batch_ind: transp_Xs_ = [] # get the nearest neighbor in the sources domains xs = nx.concatenate(self.xs_, axis=0) idx = nx.argmin(dist(Xs[bi], xs), axis=1) # transport the source samples for coupling in self.coupling_: transp = coupling / nx.sum(coupling, 1)[:, None] transp[~ nx.isfinite(transp)] = 0 transp_Xs_.append(nx.dot(transp, self.xt_)) transp_Xs_ = nx.concatenate(transp_Xs_, axis=0) # define the transported points transp_Xs_ = transp_Xs_[idx, :] + Xs[bi] - xs[idx, :] transp_Xs.append(transp_Xs_) transp_Xs = nx.concatenate(transp_Xs, axis=0) return transp_Xs
[docs] def transform_labels(self, ys=None): r"""Propagate source labels :math:`\mathbf{y_s}` to obtain target labels as in :ref:`[27] <references-jcpottransport-transform-labels>` Parameters ---------- ys : list of K array-like objects, shape K x (nk_source_samples,) A list of the class labels Returns ------- yt : array-like, shape (n_target_samples, nb_classes) Estimated soft target labels. .. _references-jcpottransport-transform-labels: References ---------- .. [27] Ievgen Redko, Nicolas Courty, Rémi Flamary, Devis Tuia "Optimal transport for multi-source domain adaptation under target shift", International Conference on Artificial Intelligence and Statistics (AISTATS), 2019. """ nx = self.nx # check the necessary inputs parameters are here if check_params(ys=ys): yt = nx.zeros( (len(nx.unique(nx.concatenate(ys))), self.xt_.shape[0]), type_as=ys[0] ) for i in range(len(ys)): ysTemp = label_normalization(ys[i]) classes = nx.unique(ysTemp) n = len(classes) ns = len(ysTemp) # perform label propagation transp = self.coupling_[i] / nx.sum(self.coupling_[i], 1)[:, None] # set nans to 0 transp[~ nx.isfinite(transp)] = 0 if self.log: D1 = self.log_['D1'][i] else: D1 = nx.zeros((n, ns), type_as=transp) for c in classes: D1[int(c), ysTemp == c] = 1 # compute propagated labels yt = yt + nx.dot(D1, transp) / len(ys) return yt.T
[docs] def inverse_transform_labels(self, yt=None): r"""Propagate target labels :math:`\mathbf{y_t}` to obtain estimated source labels :math:`\mathbf{y_s}` Parameters ---------- yt : array-like, shape (n_target_samples,) The target class labels Returns ------- transp_ys : list of K array-like objects, shape K x (nk_source_samples, nb_classes) A list of estimated soft source labels """ nx = self.nx # check the necessary inputs parameters are here if check_params(yt=yt): transp_ys = [] ytTemp = label_normalization(yt) classes = nx.unique(ytTemp) n = len(classes) D1 = nx.zeros((n, len(ytTemp)), type_as=self.coupling_[0]) for c in classes: D1[int(c), ytTemp == c] = 1 for i in range(len(self.xs_)): # perform label propagation transp = self.coupling_[i] / nx.sum(self.coupling_[i], 1)[:, None] # set nans to 0 transp[~ nx.isfinite(transp)] = 0 # compute propagated labels transp_ys.append(nx.dot(D1, transp.T).T) return transp_ys
[docs] class NearestBrenierPotential(BaseTransport): r""" Smooth Strongly Convex Nearest Brenier Potentials (SSNB) is a method from :ref:`[58]` that computes an l-strongly convex potential :math:`\varphi` with an L-Lipschitz gradient such that :math:`\nabla \varphi \# \mu \approx \nu`. This regularity can be enforced only on the components of a partition of the ambient space (encoded by point classes), which is a relaxation compared to imposing global regularity. SSNBs approach the target measure by solving the optimisation problem: .. math:: :nowrap: \begin{gather*} \varphi \in \text{argmin}_{\varphi \in \mathcal{F}}\ \text{W}_2(\nabla \varphi \#\mu_s, \mu_t), \end{gather*} where :math:`\mathcal{F}` is the space functions that are on every set :math:`E_k` l-strongly convex with an L-Lipschitz gradient, given :math:`(E_k)_{k \in [K]}` a partition of the ambient source space. The problem is solved on "fitting" source and target data via a convex Quadratically Constrained Quadratic Program, yielding the values :code:`phi` and the gradients :code:`G` at at the source points. The images of "new" source samples are then found by solving a (simpler) Quadratically Constrained Linear Program at each point, using the fitting "parameters" :code:`phi` and :code:`G`. We provide two possible images, which correspond to "lower" and "upper potentials" (:ref:`[59]`, Theorem 3.14). Each of these two images are optimal solutions of the SSNB problem, and can be used in practice. .. warning:: This function requires the CVXPY library .. warning:: Accepts any backend but will convert to Numpy then back to the backend. Parameters ---------- strongly_convex_constant : float, optional constant for the strong convexity of the input potential phi, defaults to 0.6 gradient_lipschitz_constant : float, optional constant for the Lipschitz property of the input gradient G, defaults to 1.4 its: int, optional number of iterations, defaults to 100 log : bool, optional record log if true seed: int or RandomState or None, optional Seed used for random number generator (for the initialisation in :code:`fit`. References ---------- .. [58] François-Pierre Paty, Alexandre d’Aspremont, and Marco Cuturi. Regularity as regularization: Smooth and strongly convex brenier potentials in optimal transport. In International Conference on Artificial Intelligence and Statistics, pages 1222–1232. PMLR, 2020. .. [59] Adrien B Taylor. Convex interpolation and performance estimation of first-order methods for convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2017. See Also -------- ot.mapping.nearest_brenier_potential_fit : Fitting the SSNB on source and target data ot.mapping.nearest_brenier_potential_predict_bounds : Predicting SSNB images on new source data """ def __init__(self, strongly_convex_constant=0.6, gradient_lipschitz_constant=1.4, log=False, its=100, seed=None): self.strongly_convex_constant = strongly_convex_constant self.gradient_lipschitz_constant = gradient_lipschitz_constant self.log = log self.its = its self.seed = seed self.fit_log, self.predict_log = None, None self.phi, self.G = None, None self.fit_Xs, self.fit_ys, self.fit_Xt = None, None, None
[docs] def fit(self, Xs=None, ys=None, Xt=None, yt=None): r""" Fits the Smooth Strongly Convex Nearest Brenier Potential [58] to the source data :code:`Xs` to the target data :code:`Xt`, with the partition given by the (optional) labels :code:`ys`. Wrapper for :code:`ot.mapping.nearest_brenier_potential_fit`. .. warning:: This function requires the CVXPY library .. warning:: Accepts any backend but will convert to Numpy then back to the backend. Parameters ---------- Xs : array-like (n, d) source points used to compute the optimal values phi and G ys : array-like (n,), optional classes of the reference points, defaults to a single class Xt : array-like (n, d) values of the gradients at the reference points X yt : optional ignored. Returns ------- self : object Returns self. References ---------- .. [58] François-Pierre Paty, Alexandre d’Aspremont, and Marco Cuturi. Regularity as regularization: Smooth and strongly convex brenier potentials in optimal transport. In International Conference on Artificial Intelligence and Statistics, pages 1222–1232. PMLR, 2020. See Also -------- ot.mapping.nearest_brenier_potential_fit : Fitting the SSNB on source and target data """ self.fit_Xs, self.fit_ys, self.fit_Xt = Xs, ys, Xt returned = nearest_brenier_potential_fit(Xs, Xt, X_classes=ys, strongly_convex_constant=self.strongly_convex_constant, gradient_lipschitz_constant=self.gradient_lipschitz_constant, its=self.its, log=self.log) if self.log: self.phi, self.G, self.fit_log = returned else: self.phi, self.G = returned return self
[docs] def transform(self, Xs, ys=None): r""" Computes the images of the new source samples :code:`Xs` of classes :code:`ys` by the fitted Smooth Strongly Convex Nearest Brenier Potentials (SSNB) :ref:`[58]`. The output is the images of two SSNB optimal maps, called 'lower' and 'upper' potentials (from :ref:`[59]`, Theorem 3.14). Wrapper for :code:`nearest_brenier_potential_predict_bounds`. .. warning:: This function requires the CVXPY library .. warning:: Accepts any backend but will convert to Numpy then back to the backend. Parameters ---------- Xs : array-like (m, d) input source points ys : : array_like (m,), optional classes of the input source points, defaults to a single class Returns ------- G_lu : array-like (2, m, d) gradients of the lower and upper bounding potentials at Y (images of the source inputs) References ---------- .. [58] François-Pierre Paty, Alexandre d’Aspremont, and Marco Cuturi. Regularity as regularization: Smooth and strongly convex brenier potentials in optimal transport. In International Conference on Artificial Intelligence and Statistics, pages 1222–1232. PMLR, 2020. .. [59] Adrien B Taylor. Convex interpolation and performance estimation of first-order methods for convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2017. See Also -------- ot.mapping.nearest_brenier_potential_predict_bounds : Predicting SSNB images on new source data """ returned = nearest_brenier_potential_predict_bounds( self.fit_Xs, self.phi, self.G, Xs, X_classes=self.fit_ys, Y_classes=ys, strongly_convex_constant=self.strongly_convex_constant, gradient_lipschitz_constant=self.gradient_lipschitz_constant, log=self.log) if self.log: _, G_lu, self.predict_log = returned else: _, G_lu = returned return G_lu