Source code for ot.partial

# -*- coding: utf-8 -*-
"""
Partial OT solvers
"""

# Author: Laetitia Chapel <laetitia.chapel@irisa.fr>
#         Yikun Bai < yikun.bai@vanderbilt.edu >
#         Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>

from .utils import list_to_array
from .backend import get_backend
from .lp import emd
import numpy as np
import warnings

# License: MIT License


[docs] def partial_wasserstein_lagrange( a, b, M, reg_m=None, nb_dummies=1, log=False, **kwargs ): r""" Solves the partial optimal transport problem for the quadratic cost and returns the OT plan The function considers the following problem: .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, (\mathbf{M} - \lambda) \rangle_F .. math:: s.t. \ \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \gamma &\geq 0 \mathbf{1}^T \gamma^T \mathbf{1} = m & \leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} or equivalently (see Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2018). An interpolating distance between optimal transport and Fisher–Rao metrics. Foundations of Computational Mathematics, 18(1), 1-44.) .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F + \sqrt{\frac{\lambda}{2} (\|\gamma \mathbf{1} - \mathbf{a}\|_1 + \|\gamma^T \mathbf{1} - \mathbf{b}\|_1)} s.t. \ \gamma \geq 0 where : - :math:`\mathbf{M}` is the metric cost matrix - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target unbalanced distributions - :math:`\lambda` is the lagrangian cost. Tuning its value allows attaining a given mass to be transported `m` The formulation of the problem has been proposed in :ref:`[28] <references-partial-wasserstein-lagrange>` Parameters ---------- a : np.ndarray (dim_a,) Unnormalized histogram of dimension `dim_a` b : np.ndarray (dim_b,) Unnormalized histograms of dimension `dim_b` M : np.ndarray (dim_a, dim_b) cost matrix for the quadratic cost reg_m : float, optional Lagrangian cost nb_dummies : int, optional, default:1 number of reservoir points to be added (to avoid numerical instabilities, increase its value if an error is raised) log : bool, optional record log if True **kwargs : dict parameters can be directly passed to the emd solver .. warning:: When dealing with a large number of points, the EMD solver may face some instabilities, especially when the mass associated to the dummy point is large. To avoid them, increase the number of dummy points (allows a smoother repartition of the mass over the points). Returns ------- gamma : (dim_a, dim_b) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> a = [.1, .2] >>> b = [.1, .1] >>> M = [[0., 1.], [2., 3.]] >>> np.round(partial_wasserstein_lagrange(a,b,M), 2) array([[0.1, 0. ], [0. , 0.1]]) >>> np.round(partial_wasserstein_lagrange(a,b,M,reg_m=2), 2) array([[0.1, 0. ], [0. , 0. ]]) .. _references-partial-wasserstein-lagrange: References ---------- .. [28] Caffarelli, L. A., & McCann, R. J. (2010) Free boundaries in optimal transport and Monge-Ampere obstacle problems. Annals of mathematics, 673-730. See Also -------- ot.partial.partial_wasserstein : Partial Wasserstein with fixed mass """ a, b, M = list_to_array(a, b, M) nx = get_backend(a, b, M) if nx.sum(a) > 1 + 1e-15 or nx.sum(b) > 1 + 1e-15: # 1e-15 for numerical errors raise ValueError("Problem infeasible. Check that a and b are in the simplex") if reg_m is None: reg_m = float(nx.max(M)) + 1 if reg_m < -nx.max(M): return nx.zeros((len(a), len(b)), type_as=M) a0, b0, M0 = a, b, M # convert to humpy a, b, M = nx.to_numpy(a, b, M) eps = 1e-20 M = np.asarray(M, dtype=np.float64) b = np.asarray(b, dtype=np.float64) a = np.asarray(a, dtype=np.float64) M_star = M - reg_m # modified cost matrix # trick to fasten the computation: select only the subset of columns/lines # that can have marginals greater than 0 (that is to say M < 0) idx_x = np.where(np.min(M_star, axis=1) < eps)[0] idx_y = np.where(np.min(M_star, axis=0) < eps)[0] # extend a, b, M with "reservoir" or "dummy" points M_extended = np.zeros((len(idx_x) + nb_dummies, len(idx_y) + nb_dummies)) M_extended[: len(idx_x), : len(idx_y)] = M_star[np.ix_(idx_x, idx_y)] a_extended = np.append( a[idx_x], [(np.sum(a) - np.sum(a[idx_x]) + np.sum(b)) / nb_dummies] * nb_dummies ) b_extended = np.append( b[idx_y], [(np.sum(b) - np.sum(b[idx_y]) + np.sum(a)) / nb_dummies] * nb_dummies ) gamma_extended, log_emd = emd( a_extended, b_extended, M_extended, log=True, **kwargs ) gamma = np.zeros((len(a), len(b))) gamma[np.ix_(idx_x, idx_y)] = gamma_extended[:-nb_dummies, :-nb_dummies] # convert back to backend gamma = nx.from_numpy(gamma, type_as=M0) if log_emd["warning"] is not None: raise ValueError( "Error in the EMD resolution: try to increase the number of dummy points" ) log_emd["cost"] = nx.sum(gamma * M0) log_emd["u"] = nx.from_numpy(log_emd["u"], type_as=a0) log_emd["v"] = nx.from_numpy(log_emd["v"], type_as=b0) if log: return gamma, log_emd else: return gamma
[docs] def partial_wasserstein(a, b, M, m=None, nb_dummies=1, log=False, **kwargs): r""" Solves the partial optimal transport problem for the quadratic cost and returns the OT plan The function considers the following problem: .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F .. math:: s.t. \ \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \gamma &\geq 0 \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} where : - :math:`\mathbf{M}` is the metric cost matrix - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target unbalanced distributions - `m` is the amount of mass to be transported Parameters ---------- a : np.ndarray (dim_a,) Unnormalized histogram of dimension `dim_a` b : np.ndarray (dim_b,) Unnormalized histograms of dimension `dim_b` M : np.ndarray (dim_a, dim_b) cost matrix for the quadratic cost m : float, optional amount of mass to be transported nb_dummies : int, optional, default:1 number of reservoir points to be added (to avoid numerical instabilities, increase its value if an error is raised) log : bool, optional record log if True **kwargs : dict parameters can be directly passed to the emd solver .. warning:: When dealing with a large number of points, the EMD solver may face some instabilities, especially when the mass associated to the dummy point is large. To avoid them, increase the number of dummy points (allows a smoother repartition of the mass over the points). Returns ------- gamma : (dim_a, dim_b) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> a = [.1, .2] >>> b = [.1, .1] >>> M = [[0., 1.], [2., 3.]] >>> np.round(partial_wasserstein(a,b,M), 2) array([[0.1, 0. ], [0. , 0.1]]) >>> np.round(partial_wasserstein(a,b,M,m=0.1), 2) array([[0.1, 0. ], [0. , 0. ]]) References ---------- .. [28] Caffarelli, L. A., & McCann, R. J. (2010) Free boundaries in optimal transport and Monge-Ampere obstacle problems. Annals of mathematics, 673-730. .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. See Also -------- ot.partial.partial_wasserstein_lagrange: Partial Wasserstein with regularization on the marginals ot.partial.entropic_partial_wasserstein: Partial Wasserstein with a entropic regularization parameter """ a, b, M = list_to_array(a, b, M) nx = get_backend(a, b, M) dim_a, dim_b = M.shape if len(a) == 0: a = nx.ones(dim_a, type_as=a) / dim_a if len(b) == 0: b = nx.ones(dim_b, type_as=b) / dim_b if m is None: return partial_wasserstein_lagrange(a, b, M, log=log, **kwargs) elif m < 0: raise ValueError("Problem infeasible. Parameter m should be greater than 0.") elif m > nx.min(nx.stack((nx.sum(a), nx.sum(b)))): raise ValueError( "Problem infeasible. Parameter m should lower or" " equal than min(|a|_1, |b|_1)." ) b_extension = nx.ones(nb_dummies, type_as=b) * (nx.sum(a) - m) / nb_dummies b_extended = nx.concatenate((b, b_extension)) a_extension = nx.ones(nb_dummies, type_as=a) * (nx.sum(b) - m) / nb_dummies a_extended = nx.concatenate((a, a_extension)) M_extension = nx.ones((nb_dummies, nb_dummies), type_as=M) * nx.max(M) * 2 M_extended = nx.concatenate( ( nx.concatenate((M, nx.zeros((M.shape[0], M_extension.shape[1]))), axis=1), nx.concatenate( (nx.zeros((M_extension.shape[0], M.shape[1])), M_extension), axis=1 ), ), axis=0, ) gamma, log_emd = emd(a_extended, b_extended, M_extended, log=True, **kwargs) gamma = gamma[: len(a), : len(b)] if log_emd["warning"] is not None: raise ValueError( "Error in the EMD resolution: try to increase the number of dummy points" ) log_emd["partial_w_dist"] = nx.sum(M * gamma) log_emd["u"] = log_emd["u"][: len(a)] log_emd["v"] = log_emd["v"][: len(b)] if log: return gamma, log_emd else: return gamma
[docs] def partial_wasserstein2(a, b, M, m=None, nb_dummies=1, log=False, **kwargs): r""" Solves the partial optimal transport problem for the quadratic cost and returns the partial GW discrepancy The function considers the following problem: .. math:: \gamma = \min_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F .. math:: s.t. \ \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \gamma &\geq 0 \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} where : - :math:`\mathbf{M}` is the metric cost matrix - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target unbalanced distributions - `m` is the amount of mass to be transported Parameters ---------- a : np.ndarray (dim_a,) Unnormalized histogram of dimension `dim_a` b : np.ndarray (dim_b,) Unnormalized histograms of dimension `dim_b` M : np.ndarray (dim_a, dim_b) cost matrix for the quadratic cost m : float, optional amount of mass to be transported nb_dummies : int, optional, default:1 number of reservoir points to be added (to avoid numerical instabilities, increase its value if an error is raised) log : bool, optional record log if True **kwargs : dict parameters can be directly passed to the emd solver .. warning:: When dealing with a large number of points, the EMD solver may face some instabilities, especially when the mass associated to the dummy point is large. To avoid them, increase the number of dummy points (allows a smoother repartition of the mass over the points). Returns ------- GW: float partial GW discrepancy log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> a=[.1, .2] >>> b=[.1, .1] >>> M=[[0., 1.], [2., 3.]] >>> np.round(partial_wasserstein2(a, b, M), 1) 0.3 >>> np.round(partial_wasserstein2(a,b,M,m=0.1), 1) 0.0 References ---------- .. [28] Caffarelli, L. A., & McCann, R. J. (2010) Free boundaries in optimal transport and Monge-Ampere obstacle problems. Annals of mathematics, 673-730. .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. """ a, b, M = list_to_array(a, b, M) nx = get_backend(a, b, M) partial_gw, log_w = partial_wasserstein(a, b, M, m, nb_dummies, log=True, **kwargs) log_w["T"] = partial_gw if log: return nx.sum(partial_gw * M), log_w else: return nx.sum(partial_gw * M)
[docs] def entropic_partial_wasserstein( a, b, M, reg, m=None, numItermax=1000, stopThr=1e-100, verbose=False, log=False ): r""" Solves the partial optimal transport problem and returns the OT plan The function considers the following problem: .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F + \mathrm{reg} \cdot\Omega(\gamma) s.t. \gamma \mathbf{1} &\leq \mathbf{a} \\ \gamma^T \mathbf{1} &\leq \mathbf{b} \\ \gamma &\geq 0 \\ \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} \\ where : - :math:`\mathbf{M}` is the metric cost matrix - :math:`\Omega` is the entropic regularization term, :math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the sample weights - `m` is the amount of mass to be transported The formulation of the problem has been proposed in :ref:`[3] <references-entropic-partial-wasserstein>` (prop. 5) Parameters ---------- a : np.ndarray (dim_a,) Unnormalized histogram of dimension `dim_a` b : np.ndarray (dim_b,) Unnormalized histograms of dimension `dim_b` M : np.ndarray (dim_a, dim_b) cost matrix reg : float Regularization term > 0 m : float, optional Amount of mass to be transported numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (dim_a, dim_b) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> a = [.1, .2] >>> b = [.1, .1] >>> M = [[0., 1.], [2., 3.]] >>> np.round(entropic_partial_wasserstein(a, b, M, 1, 0.1), 2) array([[0.06, 0.02], [0.01, 0. ]]) .. _references-entropic-partial-wasserstein: References ---------- .. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138. See Also -------- ot.partial.partial_wasserstein: exact Partial Wasserstein """ a, b, M = list_to_array(a, b, M) nx = get_backend(a, b, M) dim_a, dim_b = M.shape dx = nx.ones(dim_a, type_as=a) dy = nx.ones(dim_b, type_as=b) if len(a) == 0: a = nx.ones(dim_a, type_as=a) / dim_a if len(b) == 0: b = nx.ones(dim_b, type_as=b) / dim_b if m is None: m = nx.min(nx.stack((nx.sum(a), nx.sum(b)))) * 1.0 if m < 0: raise ValueError("Problem infeasible. Parameter m should be greater than 0.") if m > nx.min(nx.stack((nx.sum(a), nx.sum(b)))): raise ValueError( "Problem infeasible. Parameter m should lower or" " equal than min(|a|_1, |b|_1)." ) log_e = {"err": []} if nx.__name__ == "numpy": # Next 3 lines equivalent to K=nx.exp(-M/reg), but faster to compute K = np.empty(M.shape, dtype=M.dtype) np.divide(M, -reg, out=K) np.exp(K, out=K) np.multiply(K, m / np.sum(K), out=K) else: K = nx.exp(-M / reg) K = K * m / nx.sum(K) err, cpt = 1, 0 q1 = nx.ones(K.shape, type_as=K) q2 = nx.ones(K.shape, type_as=K) q3 = nx.ones(K.shape, type_as=K) while err > stopThr and cpt < numItermax: Kprev = K K = K * q1 K1 = nx.dot(nx.diag(nx.minimum(a / nx.sum(K, axis=1), dx)), K) q1 = q1 * Kprev / K1 K1prev = K1 K1 = K1 * q2 K2 = nx.dot(K1, nx.diag(nx.minimum(b / nx.sum(K1, axis=0), dy))) q2 = q2 * K1prev / K2 K2prev = K2 K2 = K2 * q3 K = K2 * (m / nx.sum(K2)) q3 = q3 * K2prev / K if nx.any(nx.isnan(K)) or nx.any(nx.isinf(K)): print("Warning: numerical errors at iteration", cpt) break if cpt % 10 == 0: err = nx.norm(Kprev - K) if log: log_e["err"].append(err) if verbose: if cpt % 200 == 0: print("{:5s}|{:12s}".format("It.", "Err") + "\n" + "-" * 11) print("{:5d}|{:8e}|".format(cpt, err)) cpt = cpt + 1 log_e["partial_w_dist"] = nx.sum(M * K) if log: return K, log_e else: return K
[docs] def gwgrad_partial(C1, C2, T): """Compute the GW gradient. Note: we can not use the trick in :ref:`[12] <references-gwgrad-partial>` as the marginals may not sum to 1. .. note:: This function will be deprecated in a near future, please use `ot.gromov.gwggrad` instead. Parameters ---------- C1: array of shape (n_p,n_p) intra-source (P) cost matrix C2: array of shape (n_u,n_u) intra-target (U) cost matrix T : array of shape(n_p+nb_dummies, n_u) (default: None) Transport matrix Returns ------- numpy.array of shape (n_p+nb_dummies, n_u) gradient .. _references-gwgrad-partial: References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. """ warnings.warn( "This function will be deprecated in a near future, please use " "ot.gromov.gwggrad` instead.", stacklevel=2, ) cC1 = np.dot(C1**2 / 2, np.dot(T, np.ones(C2.shape[0]).reshape(-1, 1))) cC2 = np.dot(np.dot(np.ones(C1.shape[0]).reshape(1, -1), T), C2**2 / 2) constC = cC1 + cC2 A = -np.dot(C1, T).dot(C2.T) tens = constC + A return tens * 2
[docs] def gwloss_partial(C1, C2, T): """Compute the GW loss. .. note:: This function will be deprecated in a near future, please use `ot.gromov.gwloss` instead. Parameters ---------- C1: array of shape (n_p,n_p) intra-source (P) cost matrix C2: array of shape (n_u,n_u) intra-target (U) cost matrix T : array of shape(n_p+nb_dummies, n_u) (default: None) Transport matrix Returns ------- GW loss """ warnings.warn( "This function will be deprecated in a near future, please use " "ot.gromov.gwloss` instead.", stacklevel=2, ) g = gwgrad_partial(C1, C2, T) * 0.5 return np.sum(g * T)
[docs] def partial_gromov_wasserstein( C1, C2, p, q, m=None, nb_dummies=1, G0=None, thres=1, numItermax=1000, tol=1e-7, log=False, verbose=False, **kwargs, ): r""" Solves the partial optimal transport problem and returns the OT plan The function considers the following problem: .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F .. math:: s.t. \ \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \gamma &\geq 0 \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} where : - :math:`\mathbf{M}` is the metric cost matrix - :math:`\Omega` is the entropic regularization term, :math:`\Omega(\gamma) = \sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the sample weights - `m` is the amount of mass to be transported The formulation of the problem has been proposed in :ref:`[29] <references-partial-gromov-wasserstein>` .. note:: This function will be deprecated in a near future, please use `ot.gromov.partial_gromov_wasserstein` instead. Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric costfr matrix in the target space p : ndarray, shape (ns,) Distribution in the source space q : ndarray, shape (nt,) Distribution in the target space m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) nb_dummies : int, optional Number of dummy points to add (avoid instabilities in the EMD solver) G0 : ndarray, shape (ns, nt), optional Initialization of the transportation matrix thres : float, optional quantile of the gradient matrix to populate the cost matrix when 0 (default: 1) numItermax : int, optional Max number of iterations tol : float, optional tolerance for stopping iterations log : bool, optional return log if True verbose : bool, optional Print information along iterations **kwargs : dict parameters can be directly passed to the emd solver Returns ------- gamma : (dim_a, dim_b) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> import scipy as sp >>> a = np.array([0.25] * 4) >>> b = np.array([0.25] * 4) >>> x = np.array([1,2,100,200]).reshape((-1,1)) >>> y = np.array([3,2,98,199]).reshape((-1,1)) >>> C1 = sp.spatial.distance.cdist(x, x) >>> C2 = sp.spatial.distance.cdist(y, y) >>> np.round(partial_gromov_wasserstein(C1, C2, a, b),2) array([[0. , 0.25, 0. , 0. ], [0.25, 0. , 0. , 0. ], [0. , 0. , 0.25, 0. ], [0. , 0. , 0. , 0.25]]) >>> np.round(partial_gromov_wasserstein(C1, C2, a, b, m=0.25),2) array([[0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. ], [0. , 0. , 0.25, 0. ], [0. , 0. , 0. , 0. ]]) .. _references-partial-gromov-wasserstein: References ---------- .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. """ warnings.warn( "This function will be deprecated in a near future, please use " "ot.gromov.partial_gromov_wasserstein` instead.", stacklevel=2, ) if m is None: m = np.min((np.sum(p), np.sum(q))) elif m < 0: raise ValueError("Problem infeasible. Parameter m should be greater than 0.") elif m > np.min((np.sum(p), np.sum(q))): raise ValueError( "Problem infeasible. Parameter m should lower or" " equal than min(|a|_1, |b|_1)." ) if G0 is None: G0 = ( np.outer(p, q) * m / (np.sum(p) * np.sum(q)) ) # make sure |G0|=m, G01_m\leq p, G0.T1_n\leq q. dim_G_extended = (len(p) + nb_dummies, len(q) + nb_dummies) q_extended = np.append(q, [(np.sum(p) - m) / nb_dummies] * nb_dummies) p_extended = np.append(p, [(np.sum(q) - m) / nb_dummies] * nb_dummies) cpt = 0 err = 1 if log: log = {"err": []} while err > tol and cpt < numItermax: Gprev = np.copy(G0) M = 0.5 * gwgrad_partial( C1, C2, G0 ) # rescaling the gradient with 0.5 for line-search while not changing Gc M_emd = np.zeros(dim_G_extended) M_emd[: len(p), : len(q)] = M M_emd[-nb_dummies:, -nb_dummies:] = np.max(M) * 1e2 M_emd = np.asarray(M_emd, dtype=np.float64) Gc, logemd = emd(p_extended, q_extended, M_emd, log=True, **kwargs) if logemd["warning"] is not None: raise ValueError( "Error in the EMD resolution: try to increase the" " number of dummy points" ) G0 = Gc[: len(p), : len(q)] if cpt % 10 == 0: # to speed up the computations err = np.linalg.norm(G0 - Gprev) if log: log["err"].append(err) if verbose: if cpt % 200 == 0: print( "{:5s}|{:12s}|{:12s}".format("It.", "Err", "Loss") + "\n" + "-" * 31 ) print("{:5d}|{:8e}|{:8e}".format(cpt, err, gwloss_partial(C1, C2, G0))) deltaG = G0 - Gprev a = gwloss_partial(C1, C2, deltaG) b = 2 * np.sum(M * deltaG) if b > 0: # due to numerical precision gamma = 0 cpt = numItermax elif a > 0: gamma = min(1, np.divide(-b, 2.0 * a)) else: if (a + b) < 0: gamma = 1 else: gamma = 0 cpt = numItermax G0 = Gprev + gamma * deltaG cpt += 1 if log: log["partial_gw_dist"] = gwloss_partial(C1, C2, G0) return G0[: len(p), : len(q)], log else: return G0[: len(p), : len(q)]
[docs] def partial_gromov_wasserstein2( C1, C2, p, q, m=None, nb_dummies=1, G0=None, thres=1, numItermax=1000, tol=1e-7, log=False, verbose=False, **kwargs, ): r""" Solves the partial optimal transport problem and returns the partial Gromov-Wasserstein discrepancy The function considers the following problem: .. math:: GW = \min_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F .. math:: s.t. \ \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \gamma &\geq 0 \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} where : - :math:`\mathbf{M}` is the metric cost matrix - :math:`\Omega` is the entropic regularization term, :math:`\Omega(\gamma) = \sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the sample weights - `m` is the amount of mass to be transported The formulation of the problem has been proposed in :ref:`[29] <references-partial-gromov-wasserstein2>` .. note:: This function will be deprecated in a near future, please use `ot.gromov.partial_gromov_wasserstein2` instead. Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric cost matrix in the target space p : ndarray, shape (ns,) Distribution in the source space q : ndarray, shape (nt,) Distribution in the target space m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) nb_dummies : int, optional Number of dummy points to add (avoid instabilities in the EMD solver) G0 : ndarray, shape (ns, nt), optional Initialization of the transportation matrix thres : float, optional quantile of the gradient matrix to populate the cost matrix when 0 (default: 1) numItermax : int, optional Max number of iterations tol : float, optional tolerance for stopping iterations log : bool, optional return log if True verbose : bool, optional Print information along iterations **kwargs : dict parameters can be directly passed to the emd solver .. warning:: When dealing with a large number of points, the EMD solver may face some instabilities, especially when the mass associated to the dummy point is large. To avoid them, increase the number of dummy points (allows a smoother repartition of the mass over the points). Returns ------- partial_gw_dist : float partial GW discrepancy log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> import scipy as sp >>> a = np.array([0.25] * 4) >>> b = np.array([0.25] * 4) >>> x = np.array([1,2,100,200]).reshape((-1,1)) >>> y = np.array([3,2,98,199]).reshape((-1,1)) >>> C1 = sp.spatial.distance.cdist(x, x) >>> C2 = sp.spatial.distance.cdist(y, y) >>> np.round(partial_gromov_wasserstein2(C1, C2, a, b),2) 1.69 >>> np.round(partial_gromov_wasserstein2(C1, C2, a, b, m=0.25),2) 0.0 .. _references-partial-gromov-wasserstein2: References ---------- .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. """ warnings.warn( "This function will be deprecated in a near future, please use " "ot.gromov.partial_gromov_wasserstein2` instead.", stacklevel=2, ) partial_gw, log_gw = partial_gromov_wasserstein( C1, C2, p, q, m, nb_dummies, G0, thres, numItermax, tol, True, verbose, **kwargs ) log_gw["T"] = partial_gw if log: return log_gw["partial_gw_dist"], log_gw else: return log_gw["partial_gw_dist"]
[docs] def entropic_partial_gromov_wasserstein( C1, C2, p, q, reg, m=None, G0=None, numItermax=1000, tol=1e-7, log=False, verbose=False, ): r""" Returns the partial Gromov-Wasserstein transport between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})` The function solves the following optimization problem: .. math:: \gamma = \mathop{\arg \min}_{\gamma} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l})\cdot \gamma_{i,j}\cdot\gamma_{k,l} + \mathrm{reg} \cdot\Omega(\gamma) .. math:: s.t. \ \gamma &\geq 0 \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} where : - :math:`\mathbf{C_1}` is the metric cost matrix in the source space - :math:`\mathbf{C_2}` is the metric cost matrix in the target space - :math:`\mathbf{p}` and :math:`\mathbf{q}` are the sample weights - `L`: quadratic loss function - :math:`\Omega` is the entropic regularization term, :math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - `m` is the amount of mass to be transported The formulation of the GW problem has been proposed in :ref:`[12] <references-entropic-partial-gromov-wasserstein>` and the partial GW in :ref:`[29] <references-entropic-partial-gromov-wasserstein>` .. note:: This function will be deprecated in a near future, please use `ot.gromov.entropic_partial_gromov_wasserstein` instead. Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric cost matrix in the target space p : ndarray, shape (ns,) Distribution in the source space q : ndarray, shape (nt,) Distribution in the target space reg: float entropic regularization parameter m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) G0 : ndarray, shape (ns, nt), optional Initialization of the transportation matrix numItermax : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) log : bool, optional return log if True verbose : bool, optional Print information along iterations Examples -------- >>> import ot >>> import scipy as sp >>> a = np.array([0.25] * 4) >>> b = np.array([0.25] * 4) >>> x = np.array([1,2,100,200]).reshape((-1,1)) >>> y = np.array([3,2,98,199]).reshape((-1,1)) >>> C1 = sp.spatial.distance.cdist(x, x) >>> C2 = sp.spatial.distance.cdist(y, y) >>> np.round(entropic_partial_gromov_wasserstein(C1, C2, a, b, 50), 2) array([[0.12, 0.13, 0. , 0. ], [0.13, 0.12, 0. , 0. ], [0. , 0. , 0.25, 0. ], [0. , 0. , 0. , 0.25]]) >>> np.round(entropic_partial_gromov_wasserstein(C1, C2, a, b, 50,0.25), 2) array([[0.02, 0.03, 0. , 0.03], [0.03, 0.03, 0. , 0.03], [0. , 0. , 0.03, 0. ], [0.02, 0.02, 0. , 0.03]]) Returns ------- :math: `gamma` : (dim_a, dim_b) ndarray Optimal transportation matrix for the given parameters log : dict log dictionary returned only if `log` is `True` .. _references-entropic-partial-gromov-wasserstein: References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. See Also -------- ot.partial.partial_gromov_wasserstein: exact Partial Gromov-Wasserstein """ warnings.warn( "This function will be deprecated in a near future, please use " "ot.gromov.entropic_partial_gromov_wasserstein` instead.", stacklevel=2, ) if G0 is None: G0 = np.outer(p, q) if m is None: m = np.min((np.sum(p), np.sum(q))) elif m < 0: raise ValueError("Problem infeasible. Parameter m should be greater than 0.") elif m > np.min((np.sum(p), np.sum(q))): raise ValueError( "Problem infeasible. Parameter m should lower or" " equal than min(|a|_1, |b|_1)." ) cpt = 0 err = 1 loge = {"err": []} while err > tol and cpt < numItermax: Gprev = G0 M_entr = gwgrad_partial(C1, C2, G0) G0 = entropic_partial_wasserstein(p, q, M_entr, reg, m) if cpt % 10 == 0: # to speed up the computations err = np.linalg.norm(G0 - Gprev) if log: loge["err"].append(err) if verbose: if cpt % 200 == 0: print( "{:5s}|{:12s}|{:12s}".format("It.", "Err", "Loss") + "\n" + "-" * 31 ) print("{:5d}|{:8e}|{:8e}".format(cpt, err, gwloss_partial(C1, C2, G0))) cpt += 1 if log: loge["partial_gw_dist"] = gwloss_partial(C1, C2, G0) return G0, loge else: return G0
[docs] def entropic_partial_gromov_wasserstein2( C1, C2, p, q, reg, m=None, G0=None, numItermax=1000, tol=1e-7, log=False, verbose=False, ): r""" Returns the partial Gromov-Wasserstein discrepancy between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})` The function solves the following optimization problem: .. math:: GW = \min_{\gamma} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l})\cdot \gamma_{i,j}\cdot\gamma_{k,l} + \mathrm{reg} \cdot\Omega(\gamma) .. math:: s.t. \ \gamma &\geq 0 \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} where : - :math:`\mathbf{C_1}` is the metric cost matrix in the source space - :math:`\mathbf{C_2}` is the metric cost matrix in the target space - :math:`\mathbf{p}` and :math:`\mathbf{q}` are the sample weights - `L` : quadratic loss function - :math:`\Omega` is the entropic regularization term, :math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - `m` is the amount of mass to be transported The formulation of the GW problem has been proposed in :ref:`[12] <references-entropic-partial-gromov-wasserstein2>` and the partial GW in :ref:`[29] <references-entropic-partial-gromov-wasserstein2>` .. note:: This function will be deprecated in a near future, please use `ot.gromov.entropic_partial_gromov_wasserstein2` instead. Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric cost matrix in the target space p : ndarray, shape (ns,) Distribution in the source space q : ndarray, shape (nt,) Distribution in the target space reg: float entropic regularization parameter m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) G0 : ndarray, shape (ns, nt), optional Initialization of the transportation matrix numItermax : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) log : bool, optional return log if True verbose : bool, optional Print information along iterations Returns ------- partial_gw_dist: float Gromov-Wasserstein distance log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> import scipy as sp >>> a = np.array([0.25] * 4) >>> b = np.array([0.25] * 4) >>> x = np.array([1,2,100,200]).reshape((-1,1)) >>> y = np.array([3,2,98,199]).reshape((-1,1)) >>> C1 = sp.spatial.distance.cdist(x, x) >>> C2 = sp.spatial.distance.cdist(y, y) >>> np.round(entropic_partial_gromov_wasserstein2(C1, C2, a, b,50), 2) 1.87 .. _references-entropic-partial-gromov-wasserstein2: References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. """ warnings.warn( "This function will be deprecated in a near future, please use " "ot.gromov.entropic_partial_gromov_wasserstein2` instead.", stacklevel=2, ) partial_gw, log_gw = entropic_partial_gromov_wasserstein( C1, C2, p, q, reg, m, G0, numItermax, tol, True, verbose ) log_gw["T"] = partial_gw if log: return log_gw["partial_gw_dist"], log_gw else: return log_gw["partial_gw_dist"]