Source code for ot.lp._barycenter_solvers

# -*- coding: utf-8 -*-
"""
OT Barycenter Solvers
"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#         Eloi Tanguy <eloi.tanguy@math.cnrs.fr>
#
# License: MIT License

from ..backend import get_backend
from ..utils import dist
from ._network_simplex import emd

import numpy as np
import scipy as sp
import scipy.sparse as sps

try:
    import cvxopt  # for cvxopt barycenter solver
    from cvxopt import solvers, matrix, spmatrix
except ImportError:
    cvxopt = False


def scipy_sparse_to_spmatrix(A):
    """Efficient conversion from scipy sparse matrix to cvxopt sparse matrix"""
    coo = A.tocoo()
    SP = spmatrix(coo.data.tolist(), coo.row.tolist(), coo.col.tolist(), size=A.shape)
    return SP


[docs] def barycenter(A, M, weights=None, verbose=False, log=False, solver="highs-ipm"): r"""Compute the Wasserstein barycenter of distributions A The function solves the following optimization problem [16]: .. math:: \mathbf{a} = arg\min_\mathbf{a} \sum_i W_{1}(\mathbf{a},\mathbf{a}_i) where : - :math:`W_1(\cdot,\cdot)` is the Wasserstein distance (see ot.emd.sinkhorn) - :math:`\mathbf{a}_i` are training distributions in the columns of matrix :math:`\mathbf{A}` The linear program is solved using the interior point solver from scipy.optimize. If cvxopt solver if installed it can use cvxopt Note that this problem do not scale well (both in memory and computational time). Parameters ---------- A : np.ndarray (d,n) n training distributions a_i of size d M : np.ndarray (d,d) loss matrix for OT reg : float Regularization term >0 weights : np.ndarray (n,) Weights of each histogram a_i on the simplex (barycentric coordinates) verbose : bool, optional Print information along iterations log : bool, optional record log if True solver : string, optional the solver used, default 'interior-point' use the lp solver from scipy.optimize. None, or 'glpk' or 'mosek' use the solver from cvxopt. Returns ------- a : (d,) ndarray Wasserstein barycenter log : dict log dictionary return only if log==True in parameters References ---------- .. [16] Agueh, M., & Carlier, G. (2011). Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis, 43(2), 904-924. """ if weights is None: weights = np.ones(A.shape[1]) / A.shape[1] else: assert len(weights) == A.shape[1] n_distributions = A.shape[1] n = A.shape[0] n2 = n * n c = np.zeros((0)) b_eq1 = np.zeros((0)) for i in range(n_distributions): c = np.concatenate((c, M.ravel() * weights[i])) b_eq1 = np.concatenate((b_eq1, A[:, i])) c = np.concatenate((c, np.zeros(n))) lst_idiag1 = [sps.kron(sps.eye(n), np.ones((1, n))) for i in range(n_distributions)] # row constraints A_eq1 = sps.hstack( (sps.block_diag(lst_idiag1), sps.coo_matrix((n_distributions * n, n))) ) # columns constraints lst_idiag2 = [] lst_eye = [] for i in range(n_distributions): if i == 0: lst_idiag2.append(sps.kron(np.ones((1, n)), sps.eye(n))) lst_eye.append(-sps.eye(n)) else: lst_idiag2.append(sps.kron(np.ones((1, n)), sps.eye(n - 1, n))) lst_eye.append(-sps.eye(n - 1, n)) A_eq2 = sps.hstack((sps.block_diag(lst_idiag2), sps.vstack(lst_eye))) b_eq2 = np.zeros((A_eq2.shape[0])) # full problem A_eq = sps.vstack((A_eq1, A_eq2)) b_eq = np.concatenate((b_eq1, b_eq2)) if not cvxopt or solver in ["interior-point", "highs", "highs-ipm", "highs-ds"]: # cvxopt not installed or interior point if solver is None: solver = "interior-point" options = {"disp": verbose} sol = sp.optimize.linprog( c, A_eq=A_eq, b_eq=b_eq, method=solver, options=options ) x = sol.x b = x[-n:] else: h = np.zeros((n_distributions * n2 + n)) G = -sps.eye(n_distributions * n2 + n) sol = solvers.lp( matrix(c), scipy_sparse_to_spmatrix(G), matrix(h), A=scipy_sparse_to_spmatrix(A_eq), b=matrix(b_eq), solver=solver, ) x = np.array(sol["x"]) b = x[-n:].ravel() if log: return b, sol else: return b
[docs] def free_support_barycenter( measures_locations, measures_weights, X_init, b=None, weights=None, numItermax=100, stopThr=1e-7, verbose=False, log=None, numThreads=1, ): r""" Solves the free support (locations of the barycenters are optimized, not the weights) Wasserstein barycenter problem (i.e. the weighted Frechet mean for the 2-Wasserstein distance), formally: .. math:: \min_\mathbf{X} \quad \sum_{i=1}^N w_i W_2^2(\mathbf{b}, \mathbf{X}, \mathbf{a}_i, \mathbf{X}_i) where : - :math:`w \in \mathbb{(0, 1)}^{N}`'s are the barycenter weights and sum to one - `measure_weights` denotes the :math:`\mathbf{a}_i \in \mathbb{R}^{k_i}`: empirical measures weights (on simplex) - `measures_locations` denotes the :math:`\mathbf{X}_i \in \mathbb{R}^{k_i, d}`: empirical measures atoms locations - :math:`\mathbf{b} \in \mathbb{R}^{k}` is the desired weights vector of the barycenter This problem is considered in :ref:`[20] <references-free-support-barycenter>` (Algorithm 2). There are two differences with the following codes: - we do not optimize over the weights - we do not do line search for the locations updates, we use i.e. :math:`\theta = 1` in :ref:`[20] <references-free-support-barycenter>` (Algorithm 2). This can be seen as a discrete implementation of the fixed-point algorithm of :ref:`[43] <references-free-support-barycenter>` proposed in the continuous setting. Parameters ---------- measures_locations : list of N (k_i,d) array-like The discrete support of a measure supported on :math:`k_i` locations of a `d`-dimensional space (:math:`k_i` can be different for each element of the list) measures_weights : list of N (k_i,) array-like Numpy arrays where each numpy array has :math:`k_i` non-negatives values summing to one representing the weights of each discrete input measure X_init : (k,d) array-like Initialization of the support locations (on `k` atoms) of the barycenter b : (k,) array-like Initialization of the weights of the barycenter (non-negatives, sum to 1) weights : (N,) array-like Initialization of the coefficients of the barycenter (non-negatives, sum to 1) numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True numThreads: int or "max", optional (default=1, i.e. OpenMP is not used) If compiled with OpenMP, chooses the number of threads to parallelize. "max" selects the highest number possible. Returns ------- X : (k,d) array-like Support locations (on k atoms) of the barycenter .. _references-free-support-barycenter: References ---------- .. [20] Cuturi, Marco, and Arnaud Doucet. "Fast computation of Wasserstein barycenters." International Conference on Machine Learning. 2014. .. [43] Álvarez-Esteban, Pedro C., et al. "A fixed-point approach to barycenters in Wasserstein space." Journal of Mathematical Analysis and Applications 441.2 (2016): 744-762. """ nx = get_backend(*measures_locations, *measures_weights, X_init) iter_count = 0 N = len(measures_locations) k = X_init.shape[0] d = X_init.shape[1] if b is None: b = nx.ones((k,), type_as=X_init) / k if weights is None: weights = nx.ones((N,), type_as=X_init) / N X = X_init log_dict = {} displacement_square_norms = [] displacement_square_norm = stopThr + 1.0 while displacement_square_norm > stopThr and iter_count < numItermax: T_sum = nx.zeros((k, d), type_as=X_init) for measure_locations_i, measure_weights_i, weight_i in zip( measures_locations, measures_weights, weights ): M_i = dist(X, measure_locations_i) T_i = emd(b, measure_weights_i, M_i, numThreads=numThreads) T_sum = T_sum + weight_i * 1.0 / b[:, None] * nx.dot( T_i, measure_locations_i ) displacement_square_norm = nx.sum((T_sum - X) ** 2) if log: displacement_square_norms.append(displacement_square_norm) X = T_sum if verbose: print( "iteration %d, displacement_square_norm=%f\n", iter_count, displacement_square_norm, ) iter_count += 1 if log: log_dict["displacement_square_norms"] = displacement_square_norms return X, log_dict else: return X
[docs] def generalized_free_support_barycenter( X_list, a_list, P_list, n_samples_bary, Y_init=None, b=None, weights=None, numItermax=100, stopThr=1e-7, verbose=False, log=None, numThreads=1, eps=0, ): r""" Solves the free support generalized Wasserstein barycenter problem: finding a barycenter (a discrete measure with a fixed amount of points of uniform weights) whose respective projections fit the input measures. More formally: .. math:: \min_\gamma \quad \sum_{i=1}^p w_i W_2^2(\nu_i, \mathbf{P}_i\#\gamma) where : - :math:`\gamma = \sum_{l=1}^n b_l\delta_{y_l}` is the desired barycenter with each :math:`y_l \in \mathbb{R}^d` - :math:`\mathbf{b} \in \mathbb{R}^{n}` is the desired weights vector of the barycenter - The input measures are :math:`\nu_i = \sum_{j=1}^{k_i}a_{i,j}\delta_{x_{i,j}}` - The :math:`\mathbf{a}_i \in \mathbb{R}^{k_i}` are the respective empirical measures weights (on the simplex) - The :math:`\mathbf{X}_i \in \mathbb{R}^{k_i, d_i}` are the respective empirical measures atoms locations - :math:`w = (w_1, \cdots w_p)` are the barycenter coefficients (on the simplex) - Each :math:`\mathbf{P}_i \in \mathbb{R}^{d, d_i}`, and :math:`P_i\#\nu_i = \sum_{j=1}^{k_i}a_{i,j}\delta_{P_ix_{i,j}}` As show by :ref:`[42] <references-generalized-free-support-barycenter>`, this problem can be re-written as a Wasserstein Barycenter problem, which we solve using the free support method :ref:`[20] <references-generalized-free-support-barycenter>` (Algorithm 2). Parameters ---------- X_list : list of p (k_i,d_i) array-like Discrete supports of the input measures: each consists of :math:`k_i` locations of a `d_i`-dimensional space (:math:`k_i` can be different for each element of the list) a_list : list of p (k_i,) array-like Measure weights: each element is a vector (k_i) on the simplex P_list : list of p (d_i,d) array-like Each :math:`P_i` is a linear map :math:`\mathbb{R}^{d} \rightarrow \mathbb{R}^{d_i}` n_samples_bary : int Number of barycenter points Y_init : (n_samples_bary,d) array-like Initialization of the support locations (on `k` atoms) of the barycenter b : (n_samples_bary,) array-like Initialization of the weights of the barycenter measure (on the simplex) weights : (p,) array-like Initialization of the coefficients of the barycenter (on the simplex) numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True numThreads: int or "max", optional (default=1, i.e. OpenMP is not used) If compiled with OpenMP, chooses the number of threads to parallelize. "max" selects the highest number possible. eps: Stability coefficient for the change of variable matrix inversion If the :math:`\mathbf{P}_i^T` matrices don't span :math:`\mathbb{R}^d`, the problem is ill-defined and a matrix inversion will fail. In this case one may set eps=1e-8 and get a solution anyway (which may make little sense) Returns ------- Y : (n_samples_bary,d) array-like Support locations (on n_samples_bary atoms) of the barycenter .. _references-generalized-free-support-barycenter: References ---------- .. [20] Cuturi, M. and Doucet, A.. "Fast computation of Wasserstein barycenters." International Conference on Machine Learning. 2014. .. [42] Delon, J., Gozlan, N., and Saint-Dizier, A.. Generalized Wasserstein barycenters between probability measures living on different subspaces. arXiv preprint arXiv:2105.09755, 2021. """ nx = get_backend(*X_list, *a_list, *P_list) d = P_list[0].shape[1] p = len(X_list) if weights is None: weights = nx.ones(p, type_as=X_list[0]) / p # variable change matrix to reduce the problem to a Wasserstein Barycenter (WB) A = eps * nx.eye( d, type_as=X_list[0] ) # if eps nonzero: will force the invertibility of A for P_i, lambda_i in zip(P_list, weights): A = A + lambda_i * P_i.T @ P_i B = nx.inv(nx.sqrtm(A)) Z_list = [ x @ Pi @ B.T for (x, Pi) in zip(X_list, P_list) ] # change of variables -> (WB) problem on Z if Y_init is None: Y_init = nx.randn(n_samples_bary, d, type_as=X_list[0]) if b is None: b = nx.ones(n_samples_bary, type_as=X_list[0]) / n_samples_bary # not optimized out = free_support_barycenter( Z_list, a_list, Y_init, b, numItermax=numItermax, stopThr=stopThr, verbose=verbose, log=log, numThreads=numThreads, ) if log: # unpack Y, log_dict = out else: Y = out log_dict = None Y = Y @ B.T # return to the Generalized WB formulation if log: return Y, log_dict else: return Y