Source code for ot.gromov._partial

# -*- coding: utf-8 -*-
"""
Partial (Fused) Gromov-Wasserstein solvers.
"""

# Author: Laetitia Chapel <laetitia.chapel@irisa.fr>
#         Cédric Vincent-Cuaz <cedvincentcuaz@gmail.com>
#         Yikun Bai < yikun.bai@vanderbilt.edu >
#
# License: MIT License

from ..utils import list_to_array, unif
from ..backend import get_backend, NumpyBackend
from ..partial import entropic_partial_wasserstein
from ._utils import _transform_matrix, gwloss, gwggrad
from ..optim import partial_cg, solve_1d_linesearch_quad

import numpy as np
import warnings


[docs] def partial_gromov_wasserstein( C1, C2, p=None, q=None, m=None, loss_fun="square_loss", nb_dummies=1, G0=None, thres=1, numItermax=1e4, tol=1e-8, symmetric=None, warn=True, log=False, verbose=False, **kwargs, ): r""" Returns the Partial Gromov-Wasserstein transport between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})`. The function solves the following optimization problem using Conditional Gradient: .. math:: \mathbf{T}^* \in \mathop{\arg \min}_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p} \mathbf{T}^T \mathbf{1} &= \mathbf{q} \mathbf{T} &\geq 0 \mathbf{1}^T \mathbf{T}^T \mathbf{1} = m &\leq \min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\} where : - :math:`\mathbf{C_1}`: Metric cost matrix in the source space. - :math:`\mathbf{C_2}`: Metric cost matrix in the target space. - :math:`\mathbf{p}`: Distribution in the source space. - :math:`\mathbf{q}`: Distribution in the target space. - `m` is the amount of mass to be transported - `L`: Loss function to account for the misfit between the similarity matrices. The formulation of the problem has been proposed in :ref:`[29] <references-partial-gromov-wasserstein>` .. note:: This function is backend-compatible and will work on arrays from all compatible backends. But the algorithm uses the C++ CPU backend which can lead to copy overhead on GPU arrays. .. note:: All computations in the conjugate gradient solver are done with numpy to limit memory overhead. .. note:: This function will cast the computed transport plan to the data type of the provided input :math:`\mathbf{C}_1`. Casting to an integer tensor might result in a loss of precision. If this behaviour is unwanted, please make sure to provide a floating point input. Parameters ---------- C1 : array-like, shape (ns, ns) Metric cost matrix in the source space C2 : array-like, shape (nt, nt) Metric costfr matrix in the target space p : array-like, shape (ns,), optional Distribution in the source space. If let to its default value None, uniform distribution is taken. q : array-like, shape (nt,), optional Distribution in the target space. If let to its default value None, uniform distribution is taken. m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) loss_fun : str, optional Loss function used for the solver either 'square_loss' or 'kl_loss'. nb_dummies : int, optional Number of dummy points to add (avoid instabilities in the EMD solver) G0 : array-like, shape (ns, nt), optional Initialization of the transportation matrix thres : float, optional quantile of the gradient matrix to populate the cost matrix when 0 (default: 1) numItermax : int, optional Max number of iterations tol : float, optional tolerance for stopping iterations symmetric : bool, optional Either C1 and C2 are to be assumed symmetric or not. If let to its default None value, a symmetry test will be conducted. Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric). warn: bool, optional. Whether to raise a warning when EMD did not converge. log : bool, optional return log if True verbose : bool, optional Print information along iterations **kwargs : dict parameters can be directly passed to the emd solver Returns ------- T : array-like, shape (`ns`, `nt`) Optimal transport matrix between the two spaces. log : dict Convergence information and loss. Examples -------- >>> from ot.gromov import partial_gromov_wasserstein >>> import scipy as sp >>> a = np.array([0.25] * 4) >>> b = np.array([0.25] * 4) >>> x = np.array([1,2,100,200]).reshape((-1,1)) >>> y = np.array([3,2,98,199]).reshape((-1,1)) >>> C1 = sp.spatial.distance.cdist(x, x) >>> C2 = sp.spatial.distance.cdist(y, y) >>> np.round(partial_gromov_wasserstein(C1, C2, a, b),2) array([[0. , 0.25, 0. , 0. ], [0.25, 0. , 0. , 0. ], [0. , 0. , 0.25, 0. ], [0. , 0. , 0. , 0.25]]) >>> np.round(partial_gromov_wasserstein(C1, C2, a, b, m=0.25),2) array([[0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. ], [0. , 0. , 0.25, 0. ], [0. , 0. , 0. , 0. ]]) .. _references-partial-gromov-wasserstein: References ---------- .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. """ arr = [C1, C2] if p is not None: arr.append(list_to_array(p)) else: p = unif(C1.shape[0], type_as=C1) if q is not None: arr.append(list_to_array(q)) else: q = unif(C2.shape[0], type_as=C1) if G0 is not None: G0_ = G0 arr.append(G0) nx = get_backend(*arr) p0, q0, C10, C20 = p, q, C1, C2 p = nx.to_numpy(p0) q = nx.to_numpy(q0) C1 = nx.to_numpy(C10) C2 = nx.to_numpy(C20) if symmetric is None: symmetric = np.allclose(C1, C1.T, atol=1e-10) and np.allclose( C2, C2.T, atol=1e-10 ) if m is None: m = min(np.sum(p), np.sum(q)) elif m < 0: raise ValueError("Problem infeasible. Parameter m should be greater than 0.") elif m > min(np.sum(p), np.sum(q)): raise ValueError( "Problem infeasible. Parameter m should lower or" " equal than min(|a|_1, |b|_1)." ) if G0 is None: G0 = ( np.outer(p, q) * m / (np.sum(p) * np.sum(q)) ) # make sure |G0|=m, G01_m\leq p, G0.T1_n\leq q. else: G0 = nx.to_numpy(G0_) # Check marginals of G0 assert np.all(G0.sum(1) <= p) assert np.all(G0.sum(0) <= q) q_extended = np.append(q, [(np.sum(p) - m) / nb_dummies] * nb_dummies) p_extended = np.append(p, [(np.sum(q) - m) / nb_dummies] * nb_dummies) # cg for GW is implemented using numpy on CPU np_ = NumpyBackend() fC1, fC2, hC1, hC2 = _transform_matrix(C1, C2, loss_fun, np_) fC2t = fC2.T if not symmetric: fC1t, hC1t, hC2t = fC1.T, hC1.T, hC2.T ones_p = np_.ones(p.shape[0], type_as=p) ones_q = np_.ones(q.shape[0], type_as=q) def f(G): pG = G.sum(1) qG = G.sum(0) constC1 = np.outer(np.dot(fC1, pG), ones_q) constC2 = np.outer(ones_p, np.dot(qG, fC2t)) return gwloss(constC1 + constC2, hC1, hC2, G, np_) if symmetric: def df(G): pG = G.sum(1) qG = G.sum(0) constC1 = np.outer(np.dot(fC1, pG), ones_q) constC2 = np.outer(ones_p, np.dot(qG, fC2t)) return gwggrad(constC1 + constC2, hC1, hC2, G, np_) else: def df(G): pG = G.sum(1) qG = G.sum(0) constC1 = np.outer(np.dot(fC1, pG), ones_q) constC2 = np.outer(ones_p, np.dot(qG, fC2t)) constC1t = np.outer(np.dot(fC1t, pG), ones_q) constC2t = np.outer(ones_p, np.dot(qG, fC2)) return 0.5 * ( gwggrad(constC1 + constC2, hC1, hC2, G, np_) + gwggrad(constC1t + constC2t, hC1t, hC2t, G, np_) ) def line_search(cost, G, deltaG, Mi, cost_G, df_G, **kwargs): df_Gc = df(deltaG + G) return solve_partial_gromov_linesearch( G, deltaG, cost_G, df_G, df_Gc, M=0.0, reg=1.0, nx=np_, **kwargs ) if not nx.is_floating_point(C10): warnings.warn( "Input structure matrix consists of integers. The transport plan will be " "casted accordingly, possibly resulting in a loss of precision. " "If this behaviour is unwanted, please make sure your input " "structure matrix consists of floating point elements.", stacklevel=2, ) if log: res, log = partial_cg( p, q, p_extended, q_extended, 0.0, 1.0, f, df, G0, line_search, log=True, numItermax=numItermax, stopThr=tol, stopThr2=0.0, warn=warn, **kwargs, ) log["partial_gw_dist"] = nx.from_numpy(log["loss"][-1], type_as=C10) return nx.from_numpy(res, type_as=C10), log else: return nx.from_numpy( partial_cg( p, q, p_extended, q_extended, 0.0, 1.0, f, df, G0, line_search, log=False, numItermax=numItermax, stopThr=tol, stopThr2=0.0, **kwargs, ), type_as=C10, )
[docs] def partial_gromov_wasserstein2( C1, C2, p=None, q=None, m=None, loss_fun="square_loss", nb_dummies=1, G0=None, thres=1, numItermax=1e4, tol=1e-7, symmetric=None, warn=False, log=False, verbose=False, **kwargs, ): r""" Returns the Partial Gromov-Wasserstein discrepancy between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})`. The function solves the following optimization problem using Conditional Gradient: .. math:: \mathbf{PGW} = \mathop{\min}_\mathbf{T} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p} \mathbf{T}^T \mathbf{1} &= \mathbf{q} \mathbf{T} &\geq 0 \mathbf{1}^T \mathbf{T}^T \mathbf{1} = m &\leq \min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\} where : - :math:`\mathbf{C_1}`: Metric cost matrix in the source space. - :math:`\mathbf{C_2}`: Metric cost matrix in the target space. - :math:`\mathbf{p}`: Distribution in the source space. - :math:`\mathbf{q}`: Distribution in the target space. - `m` is the amount of mass to be transported - `L`: Loss function to account for the misfit between the similarity matrices. The formulation of the problem has been proposed in :ref:`[29] <references-partial-gromov-wasserstein2>` Note that when using backends, this loss function is differentiable wrt the matrices (C1, C2). .. note:: This function is backend-compatible and will work on arrays from all compatible backends. But the algorithm uses the C++ CPU backend which can lead to copy overhead on GPU arrays. .. note:: All computations in the conjugate gradient solver are done with numpy to limit memory overhead. .. note:: This function will cast the computed transport plan to the data type of the provided input :math:`\mathbf{C}_1`. Casting to an integer tensor might result in a loss of precision. If this behaviour is unwanted, please make sure to provide a floating point input. Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric cost matrix in the target space p : ndarray, shape (ns,) Distribution in the source space q : ndarray, shape (nt,) Distribution in the target space m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) loss_fun : str, optional Loss function used for the solver either 'square_loss' or 'kl_loss'. nb_dummies : int, optional Number of dummy points to add (avoid instabilities in the EMD solver) G0 : ndarray, shape (ns, nt), optional Initialization of the transportation matrix thres : float, optional quantile of the gradient matrix to populate the cost matrix when 0 (default: 1) numItermax : int, optional Max number of iterations tol : float, optional tolerance for stopping iterations symmetric : bool, optional Either C1 and C2 are to be assumed symmetric or not. If let to its default None value, a symmetry test will be conducted. Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric). warn: bool, optional. Whether to raise a warning when EMD did not converge. log : bool, optional return log if True verbose : bool, optional Print information along iterations **kwargs : dict parameters can be directly passed to the emd solver .. warning:: When dealing with a large number of points, the EMD solver may face some instabilities, especially when the mass associated to the dummy point is large. To avoid them, increase the number of dummy points (allows a smoother repartition of the mass over the points). Returns ------- partial_gw_dist : float partial GW discrepancy log : dict log dictionary returned only if `log` is `True` Examples -------- >>> from ot.gromov import partial_gromov_wasserstein2 >>> import scipy as sp >>> a = np.array([0.25] * 4) >>> b = np.array([0.25] * 4) >>> x = np.array([1,2,100,200]).reshape((-1,1)) >>> y = np.array([3,2,98,199]).reshape((-1,1)) >>> C1 = sp.spatial.distance.cdist(x, x) >>> C2 = sp.spatial.distance.cdist(y, y) >>> np.round(partial_gromov_wasserstein2(C1, C2, a, b),2) 3.38 >>> np.round(partial_gromov_wasserstein2(C1, C2, a, b, m=0.25),2) 0.0 .. _references-partial-gromov-wasserstein2: References ---------- .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. """ # simple get_backend as the full one will be handled in gromov_wasserstein nx = get_backend(C1, C2) # init marginals if set as None if p is None: p = unif(C1.shape[0], type_as=C1) if q is None: q = unif(C2.shape[0], type_as=C1) T, log_pgw = partial_gromov_wasserstein( C1, C2, p, q, m, loss_fun, nb_dummies, G0, thres, numItermax, tol, symmetric, warn, True, verbose, **kwargs, ) log_pgw["T"] = T pgw = log_pgw["partial_gw_dist"] if loss_fun == "square_loss": gC1 = 2 * C1 * nx.outer(p, p) - 2 * nx.dot(T, nx.dot(C2, T.T)) gC2 = 2 * C2 * nx.outer(q, q) - 2 * nx.dot(T.T, nx.dot(C1, T)) elif loss_fun == "kl_loss": gC1 = nx.log(C1 + 1e-15) * nx.outer(p, p) - nx.dot( T, nx.dot(nx.log(C2 + 1e-15), T.T) ) gC2 = -nx.dot(T.T, nx.dot(C1, T)) / (C2 + 1e-15) + nx.outer(q, q) pgw = nx.set_gradients(pgw, (C1, C2), (gC1, gC2)) if log: return pgw, log_pgw else: return pgw
[docs] def partial_fused_gromov_wasserstein( M, C1, C2, p=None, q=None, m=None, loss_fun="square_loss", alpha=0.5, nb_dummies=1, G0=None, thres=1, numItermax=1e4, tol=1e-8, symmetric=None, warn=True, log=False, verbose=False, **kwargs, ): r""" Returns the Partial Fused Gromov-Wasserstein transport between :math:`(\mathbf{C_1}, \mathbf{F_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{F_2}, \mathbf{q})`, with pairwise distance matrix :math:`\mathbf{M}` between node feature matrices. The function solves the following optimization problem using Conditional Gradient: .. math:: \mathbf{T}^* \in \mathop{\arg \min}_\mathbf{T} \quad (1 - \alpha) \langle \mathbf{T}, \mathbf{M} \rangle_F + \alpha \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p} \mathbf{T}^T \mathbf{1} &= \mathbf{q} \mathbf{T} &\geq 0 \mathbf{1}^T \mathbf{T}^T \mathbf{1} = m &\leq \min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\} where : - :math:`\mathbf{M}`: metric cost matrix between features across domains - :math:`\mathbf{C_1}`: Metric cost matrix in the source space. - :math:`\mathbf{C_2}`: Metric cost matrix in the target space. - :math:`\mathbf{p}`: Distribution in the source space. - :math:`\mathbf{q}`: Distribution in the target space. - `m` is the amount of mass to be transported - `L`: Loss function to account for the misfit between the similarity matrices. The formulation of the problem has been proposed in :ref:`[29] <references-partial-gromov-wasserstein>` .. note:: This function is backend-compatible and will work on arrays from all compatible backends. But the algorithm uses the C++ CPU backend which can lead to copy overhead on GPU arrays. .. note:: All computations in the conjugate gradient solver are done with numpy to limit memory overhead. .. note:: This function will cast the computed transport plan to the data type of the provided input :math:`\mathbf{C}_1`. Casting to an integer tensor might result in a loss of precision. If this behaviour is unwanted, please make sure to provide a floating point input. Parameters ---------- M : array-like, shape (ns, nt) Metric cost matrix between features across domains C1 : array-like, shape (ns, ns) Metric cost matrix in the source space C2 : array-like, shape (nt, nt) Metric costfr matrix in the target space p : array-like, shape (ns,), optional Distribution in the source space. If let to its default value None, uniform distribution is taken. q : array-like, shape (nt,), optional Distribution in the target space. If let to its default value None, uniform distribution is taken. m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) loss_fun : str, optional Loss function used for the solver either 'square_loss' or 'kl_loss'. alpha : float, optional Trade-off parameter (0 < alpha < 1) nb_dummies : int, optional Number of dummy points to add (avoid instabilities in the EMD solver) G0 : array-like, shape (ns, nt), optional Initialization of the transportation matrix thres : float, optional quantile of the gradient matrix to populate the cost matrix when 0 (default: 1) numItermax : int, optional Max number of iterations tol : float, optional tolerance for stopping iterations symmetric : bool, optional Either C1 and C2 are to be assumed symmetric or not. If let to its default None value, a symmetry test will be conducted. Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric). warn: bool, optional. Whether to raise a warning when EMD did not converge. log : bool, optional return log if True verbose : bool, optional Print information along iterations **kwargs : dict parameters can be directly passed to the emd solver Returns ------- T : array-like, shape (`ns`, `nt`) Optimal transport matrix between the two spaces. log : dict Convergence information and loss. .. _references-partial-gromov-wasserstein: References ---------- .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. .. [24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain and Courty Nicolas "Optimal Transport for structured data with application on graphs", International Conference on Machine Learning (ICML). 2019. """ arr = [M, C1, C2] if p is not None: arr.append(list_to_array(p)) else: p = unif(C1.shape[0], type_as=C1) if q is not None: arr.append(list_to_array(q)) else: q = unif(C2.shape[0], type_as=C1) if G0 is not None: G0_ = G0 arr.append(G0) nx = get_backend(*arr) p0, q0, M0, C10, C20, alpha0 = p, q, M, C1, C2, alpha p = nx.to_numpy(p0) q = nx.to_numpy(q0) M = nx.to_numpy(M0) C1 = nx.to_numpy(C10) C2 = nx.to_numpy(C20) alpha = nx.to_numpy(alpha0) if symmetric is None: symmetric = np.allclose(C1, C1.T, atol=1e-10) and np.allclose( C2, C2.T, atol=1e-10 ) if m is None: m = min(np.sum(p), np.sum(q)) elif m < 0: raise ValueError("Problem infeasible. Parameter m should be greater than 0.") elif m > min(np.sum(p), np.sum(q)): raise ValueError( "Problem infeasible. Parameter m should lower or" " equal than min(|a|_1, |b|_1)." ) if G0 is None: G0 = ( np.outer(p, q) * m / (np.sum(p) * np.sum(q)) ) # make sure |G0|=m, G01_m\leq p, G0.T1_n\leq q. else: G0 = nx.to_numpy(G0_) # Check marginals of G0 assert np.all(G0.sum(1) <= p) assert np.all(G0.sum(0) <= q) q_extended = np.append(q, [(np.sum(p) - m) / nb_dummies] * nb_dummies) p_extended = np.append(p, [(np.sum(q) - m) / nb_dummies] * nb_dummies) # cg for GW is implemented using numpy on CPU np_ = NumpyBackend() fC1, fC2, hC1, hC2 = _transform_matrix(C1, C2, loss_fun, np_) fC2t = fC2.T if not symmetric: fC1t, hC1t, hC2t = fC1.T, hC1.T, hC2.T ones_p = np_.ones(p.shape[0], type_as=p) ones_q = np_.ones(q.shape[0], type_as=q) def f(G): pG = G.sum(1) qG = G.sum(0) constC1 = np.outer(np.dot(fC1, pG), ones_q) constC2 = np.outer(ones_p, np.dot(qG, fC2t)) return gwloss(constC1 + constC2, hC1, hC2, G, np_) if symmetric: def df(G): pG = G.sum(1) qG = G.sum(0) constC1 = np.outer(np.dot(fC1, pG), ones_q) constC2 = np.outer(ones_p, np.dot(qG, fC2t)) return gwggrad(constC1 + constC2, hC1, hC2, G, np_) else: def df(G): pG = G.sum(1) qG = G.sum(0) constC1 = np.outer(np.dot(fC1, pG), ones_q) constC2 = np.outer(ones_p, np.dot(qG, fC2t)) constC1t = np.outer(np.dot(fC1t, pG), ones_q) constC2t = np.outer(ones_p, np.dot(qG, fC2)) return 0.5 * ( gwggrad(constC1 + constC2, hC1, hC2, G, np_) + gwggrad(constC1t + constC2t, hC1t, hC2t, G, np_) ) def line_search(cost, G, deltaG, Mi, cost_G, df_G, **kwargs): df_Gc = df(deltaG + G) return solve_partial_gromov_linesearch( G, deltaG, cost_G, df_G, df_Gc, M=(1 - alpha) * M, reg=alpha, nx=np_, **kwargs, ) if not nx.is_floating_point(C10): warnings.warn( "Input structure matrix consists of integers. The transport plan will be " "casted accordingly, possibly resulting in a loss of precision. " "If this behaviour is unwanted, please make sure your input " "structure matrix consists of floating point elements.", stacklevel=2, ) if log: res, log = partial_cg( p, q, p_extended, q_extended, (1 - alpha) * M, alpha, f, df, G0, line_search, log=True, numItermax=numItermax, stopThr=tol, stopThr2=0.0, warn=warn, **kwargs, ) log["partial_fgw_dist"] = nx.from_numpy(log["loss"][-1], type_as=C10) return nx.from_numpy(res, type_as=C10), log else: return nx.from_numpy( partial_cg( p, q, p_extended, q_extended, (1 - alpha) * M, alpha, f, df, G0, line_search, log=False, numItermax=numItermax, stopThr=tol, stopThr2=0.0, **kwargs, ), type_as=C10, )
[docs] def partial_fused_gromov_wasserstein2( M, C1, C2, p=None, q=None, m=None, loss_fun="square_loss", alpha=0.5, nb_dummies=1, G0=None, thres=1, numItermax=1e4, tol=1e-7, symmetric=None, warn=False, log=False, verbose=False, **kwargs, ): r""" Returns the Partial Fused Gromov-Wasserstein discrepancy between :math:`(\mathbf{C_1}, \mathbf{F_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{F_2}, \mathbf{q})`, with pairwise distance matrix :math:`\mathbf{M}` between node feature matrices. The function solves the following optimization problem using Conditional Gradient: .. math:: \mathbf{PFGW}_{\alpha} = \mathop{\min}_\mathbf{T} \quad (1 - \alpha) \langle \mathbf{T}, \mathbf{M} \rangle_F + \alpha \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l}) \mathbf{T}_{i,j} \mathbf{T}_{k,l} s.t. \ \mathbf{T} \mathbf{1} &= \mathbf{p} \mathbf{T}^T \mathbf{1} &= \mathbf{q} \mathbf{T} &\geq 0 \mathbf{1}^T \mathbf{T}^T \mathbf{1} = m &\leq \min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\} where : - :math:`\mathbf{M}`: metric cost matrix between features across domains - :math:`\mathbf{C_1}`: Metric cost matrix in the source space. - :math:`\mathbf{C_2}`: Metric cost matrix in the target space. - :math:`\mathbf{p}`: Distribution in the source space. - :math:`\mathbf{q}`: Distribution in the target space. - `m` is the amount of mass to be transported - `L`: Loss function to account for the misfit between the similarity matrices. The formulation of the problem has been proposed in :ref:`[29] <references-partial-gromov-wasserstein2>` Note that when using backends, this loss function is differentiable wrt the matrices (M, C1, C2). .. note:: This function is backend-compatible and will work on arrays from all compatible backends. But the algorithm uses the C++ CPU backend which can lead to copy overhead on GPU arrays. .. note:: All computations in the conjugate gradient solver are done with numpy to limit memory overhead. .. note:: This function will cast the computed transport plan to the data type of the provided input :math:`\mathbf{C}_1`. Casting to an integer tensor might result in a loss of precision. If this behaviour is unwanted, please make sure to provide a floating point input. Parameters ---------- M : array-like, shape (ns, nt) Metric cost matrix between features across domains C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric cost matrix in the target space p : ndarray, shape (ns,) Distribution in the source space q : ndarray, shape (nt,) Distribution in the target space m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) loss_fun : str, optional Loss function used for the solver either 'square_loss' or 'kl_loss'. alpha : float, optional Trade-off parameter (0 < alpha < 1) nb_dummies : int, optional Number of dummy points to add (avoid instabilities in the EMD solver) G0 : ndarray, shape (ns, nt), optional Initialization of the transportation matrix thres : float, optional quantile of the gradient matrix to populate the cost matrix when 0 (default: 1) numItermax : int, optional Max number of iterations tol : float, optional tolerance for stopping iterations symmetric : bool, optional Either C1 and C2 are to be assumed symmetric or not. If let to its default None value, a symmetry test will be conducted. Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric). warn: bool, optional. Whether to raise a warning when EMD did not converge. log : bool, optional return log if True verbose : bool, optional Print information along iterations **kwargs : dict parameters can be directly passed to the emd solver .. warning:: When dealing with a large number of points, the EMD solver may face some instabilities, especially when the mass associated to the dummy point is large. To avoid them, increase the number of dummy points (allows a smoother repartition of the mass over the points). Returns ------- partial_fgw_dist : float partial FGW discrepancy log : dict log dictionary returned only if `log` is `True` .. _references-partial-gromov-wasserstein2: References ---------- .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. .. [24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain and Courty Nicolas "Optimal Transport for structured data with application on graphs", International Conference on Machine Learning (ICML). 2019. """ # simple get_backend as the full one will be handled in gromov_wasserstein nx = get_backend(M, C1, C2) # init marginals if set as None if p is None: p = unif(C1.shape[0], type_as=C1) if q is None: q = unif(C2.shape[0], type_as=C1) T, log_pfgw = partial_fused_gromov_wasserstein( M, C1, C2, p, q, m, loss_fun, alpha, nb_dummies, G0, thres, numItermax, tol, symmetric, warn, True, verbose, **kwargs, ) log_pfgw["T"] = T pfgw = log_pfgw["partial_fgw_dist"] # compute separate terms for gradients and log lin_term = nx.sum(T * M) log_pfgw["quad_loss"] = pfgw - (1 - alpha) * lin_term log_pfgw["lin_loss"] = lin_term * (1 - alpha) pgw_term = log_pfgw["quad_loss"] / alpha if loss_fun == "square_loss": gC1 = 2 * C1 * nx.outer(p, p) - 2 * nx.dot(T, nx.dot(C2, T.T)) gC2 = 2 * C2 * nx.outer(q, q) - 2 * nx.dot(T.T, nx.dot(C1, T)) elif loss_fun == "kl_loss": gC1 = nx.log(C1 + 1e-15) * nx.outer(p, p) - nx.dot( T, nx.dot(nx.log(C2 + 1e-15), T.T) ) gC2 = -nx.dot(T.T, nx.dot(C1, T)) / (C2 + 1e-15) + nx.outer(q, q) if isinstance(alpha, int) or isinstance(alpha, float): pfgw = nx.set_gradients( pfgw, (M, C1, C2), ((1 - alpha) * T, alpha * gC1, alpha * gC2) ) else: pfgw = nx.set_gradients( pfgw, (M, C1, C2, alpha), ((1 - alpha) * T, alpha * gC1, alpha * gC2, pgw_term - lin_term), ) if log: return pfgw, log_pfgw else: return pfgw
[docs] def solve_partial_gromov_linesearch( G, deltaG, cost_G, df_G, df_Gc, M, reg, alpha_min=None, alpha_max=None, nx=None, **kwargs, ): """ Solve the linesearch in the FW iterations of partial (F)GW following eq.5 of :ref:`[29]`. Parameters ---------- G : array-like, shape(ns, nt) The transport map at a given iteration of the FW deltaG : array-like, shape (ns, nt) Difference between the optimal map `Gc` found by linearization in the FW algorithm and the value at a given iteration cost_G : float Value of the cost at `G` df_G : array-like, shape (ns, nt) Gradient of the GW cost at `G` df_Gc : array-like, shape (ns, nt) Gradient of the GW cost at `Gc` M : array-like, shape (ns, nt) Cost matrix between the features. reg : float Regularization parameter. alpha_min : float, optional Minimum value for alpha alpha_max : float, optional Maximum value for alpha nx : backend, optional If let to its default value None, a backend test will be conducted. Returns ------- alpha : float The optimal step size of the FW fc : int nb of function call. Useless here cost_G : float The value of the cost for the next iteration df_G : array-like, shape (ns, nt) Updated gradient of the GW cost References ---------- .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. """ if nx is None: if isinstance(M, int) or isinstance(M, float): nx = get_backend(G, deltaG, df_G, df_Gc) else: nx = get_backend(G, deltaG, df_G, df_Gc, M) df_deltaG = df_Gc - df_G cost_deltaG = 0.5 * nx.sum(df_deltaG * deltaG) a = reg * cost_deltaG # formula to check for partial FGW b = nx.sum(M * deltaG) + reg * nx.sum(df_G * deltaG) alpha = solve_1d_linesearch_quad(a, b) if alpha_min is not None or alpha_max is not None: alpha = np.clip(alpha, alpha_min, alpha_max) # the new cost is deduced from the line search quadratic function cost_G = cost_G + a * (alpha**2) + b * alpha # update the gradient for next cg iteration df_G = df_G + alpha * df_deltaG return alpha, 1, cost_G, df_G
[docs] def entropic_partial_gromov_wasserstein( C1, C2, p=None, q=None, reg=1.0, m=None, loss_fun="square_loss", G0=None, numItermax=1000, tol=1e-7, symmetric=None, log=False, verbose=False, ): r""" Returns the partial Gromov-Wasserstein transport between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})` The function solves the following optimization problem: .. math:: \gamma = \mathop{\arg \min}_{\gamma} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l})\cdot \gamma_{i,j}\cdot\gamma_{k,l} + \mathrm{reg} \cdot\Omega(\gamma) .. math:: s.t. \ \gamma &\geq 0 \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} where : - :math:`\mathbf{C_1}` is the metric cost matrix in the source space - :math:`\mathbf{C_2}` is the metric cost matrix in the target space - :math:`\mathbf{p}` and :math:`\mathbf{q}` are the sample weights - `L`: quadratic loss function - :math:`\Omega` is the entropic regularization term, :math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - `m` is the amount of mass to be transported The formulation of the GW problem has been proposed in :ref:`[12] <references-entropic-partial-gromov-wasserstein>` and the partial GW in :ref:`[29] <references-entropic-partial-gromov-wasserstein>` Parameters ---------- C1 : array-like, shape (ns, ns) Metric cost matrix in the source space C2 : array-like, shape (nt, nt) Metric cost matrix in the target space p : array-like, shape (ns,), optional Distribution in the source space. If let to its default value None, uniform distribution is taken. q : array-like, shape (nt,), optional Distribution in the target space. If let to its default value None, uniform distribution is taken. reg: float, optional. Default is 1. entropic regularization parameter m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) loss_fun : str, optional Loss function used for the solver either 'square_loss' or 'kl_loss'. G0 : array-like, shape (ns, nt), optional Initialization of the transportation matrix numItermax : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) symmetric : bool, optional Either C1 and C2 are to be assumed symmetric or not. If let to its default None value, a symmetry test will be conducted. Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric). log : bool, optional return log if True verbose : bool, optional Print information along iterations Examples -------- >>> from ot.gromov import entropic_partial_gromov_wasserstein >>> import scipy as sp >>> a = np.array([0.25] * 4) >>> b = np.array([0.25] * 4) >>> x = np.array([1,2,100,200]).reshape((-1,1)) >>> y = np.array([3,2,98,199]).reshape((-1,1)) >>> C1 = sp.spatial.distance.cdist(x, x) >>> C2 = sp.spatial.distance.cdist(y, y) >>> np.round(entropic_partial_gromov_wasserstein(C1, C2, a, b, 1e2), 2) array([[0.12, 0.13, 0. , 0. ], [0.13, 0.12, 0. , 0. ], [0. , 0. , 0.25, 0. ], [0. , 0. , 0. , 0.25]]) >>> np.round(entropic_partial_gromov_wasserstein(C1, C2, a, b, 1e2,0.25), 2) array([[0.02, 0.03, 0. , 0.03], [0.03, 0.03, 0. , 0.03], [0. , 0. , 0.03, 0. ], [0.02, 0.02, 0. , 0.03]]) Returns ------- :math:`gamma` : ndarray, shape (dim_a, dim_b) Optimal transportation matrix for the given parameters log : dict log dictionary returned only if `log` is `True` .. _references-entropic-partial-gromov-wasserstein: References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. See Also -------- ot.partial.partial_gromov_wasserstein: exact Partial Gromov-Wasserstein """ arr = [C1, C2, G0] if p is not None: p = list_to_array(p) arr.append(p) if q is not None: q = list_to_array(q) arr.append(q) nx = get_backend(*arr) if p is None: p = nx.ones(C1.shape[0], type_as=C1) / C1.shape[0] if q is None: q = nx.ones(C2.shape[0], type_as=C2) / C2.shape[0] if m is None: m = min(nx.sum(p), nx.sum(q)) elif m < 0: raise ValueError("Problem infeasible. Parameter m should be greater than 0.") elif m > min(nx.sum(p), nx.sum(q)): raise ValueError( "Problem infeasible. Parameter m should lower or" " equal than min(|a|_1, |b|_1)." ) if G0 is None: G0 = ( nx.outer(p, q) * m / (nx.sum(p) * nx.sum(q)) ) # make sure |G0|=m, G01_m\leq p, G0.T1_n\leq q. else: # Check marginals of G0 assert nx.any(nx.sum(G0, 1) <= p) assert nx.any(nx.sum(G0, 0) <= q) if symmetric is None: symmetric = np.allclose(C1, C1.T, atol=1e-10) and np.allclose( C2, C2.T, atol=1e-10 ) # Setup gradient computation fC1, fC2, hC1, hC2 = _transform_matrix(C1, C2, loss_fun, nx) fC2t = fC2.T if not symmetric: fC1t, hC1t, hC2t = fC1.T, hC1.T, hC2.T ones_p = nx.ones(p.shape[0], type_as=p) ones_q = nx.ones(q.shape[0], type_as=q) def f(G): pG = nx.sum(G, 1) qG = nx.sum(G, 0) constC1 = nx.outer(nx.dot(fC1, pG), ones_q) constC2 = nx.outer(ones_p, nx.dot(qG, fC2t)) return gwloss(constC1 + constC2, hC1, hC2, G, nx) if symmetric: def df(G): pG = nx.sum(G, 1) qG = nx.sum(G, 0) constC1 = nx.outer(nx.dot(fC1, pG), ones_q) constC2 = nx.outer(ones_p, nx.dot(qG, fC2t)) return gwggrad(constC1 + constC2, hC1, hC2, G, nx) else: def df(G): pG = nx.sum(G, 1) qG = nx.sum(G, 0) constC1 = nx.outer(nx.dot(fC1, pG), ones_q) constC2 = nx.outer(ones_p, nx.dot(qG, fC2t)) constC1t = nx.outer(nx.dot(fC1t, pG), ones_q) constC2t = nx.outer(ones_p, nx.dot(qG, fC2)) return 0.5 * ( gwggrad(constC1 + constC2, hC1, hC2, G, nx) + gwggrad(constC1t + constC2t, hC1t, hC2t, G, nx) ) cpt = 0 err = 1 loge = {"err": []} while err > tol and cpt < numItermax: Gprev = G0 M_entr = df(G0) G0 = entropic_partial_wasserstein(p, q, M_entr, reg, m) if cpt % 10 == 0: # to speed up the computations err = np.linalg.norm(G0 - Gprev) if log: loge["err"].append(err) if verbose: if cpt % 200 == 0: print( "{:5s}|{:12s}|{:12s}".format("It.", "Err", "Loss") + "\n" + "-" * 31 ) print("{:5d}|{:8e}|{:8e}".format(cpt, err, f(G0))) cpt += 1 if log: loge["partial_gw_dist"] = f(G0) return G0, loge else: return G0
[docs] def entropic_partial_gromov_wasserstein2( C1, C2, p=None, q=None, reg=1.0, m=None, loss_fun="square_loss", G0=None, numItermax=1000, tol=1e-7, symmetric=None, log=False, verbose=False, ): r""" Returns the partial Gromov-Wasserstein discrepancy between :math:`(\mathbf{C_1}, \mathbf{p})` and :math:`(\mathbf{C_2}, \mathbf{q})` The function solves the following optimization problem: .. math:: PGW = \min_{\gamma} \quad \sum_{i,j,k,l} L(\mathbf{C_1}_{i,k}, \mathbf{C_2}_{j,l})\cdot \gamma_{i,j}\cdot\gamma_{k,l} + \mathrm{reg} \cdot\Omega(\gamma) .. math:: s.t. \ \gamma &\geq 0 \gamma \mathbf{1} &\leq \mathbf{a} \gamma^T \mathbf{1} &\leq \mathbf{b} \mathbf{1}^T \gamma^T \mathbf{1} = m &\leq \min\{\|\mathbf{a}\|_1, \|\mathbf{b}\|_1\} where : - :math:`\mathbf{C_1}` is the metric cost matrix in the source space - :math:`\mathbf{C_2}` is the metric cost matrix in the target space - :math:`\mathbf{p}` and :math:`\mathbf{q}` are the sample weights - `L`: Loss function to account for the misfit between the similarity matrices. - :math:`\Omega` is the entropic regularization term, :math:`\Omega=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` - `m` is the amount of mass to be transported The formulation of the GW problem has been proposed in :ref:`[12] <references-entropic-partial-gromov-wasserstein2>` and the partial GW in :ref:`[29] <references-entropic-partial-gromov-wasserstein2>` Parameters ---------- C1 : ndarray, shape (ns, ns) Metric cost matrix in the source space C2 : ndarray, shape (nt, nt) Metric cost matrix in the target space p : array-like, shape (ns,), optional Distribution in the source space. If let to its default value None, uniform distribution is taken. q : array-like, shape (nt,), optional Distribution in the target space. If let to its default value None, uniform distribution is taken. reg: float entropic regularization parameter m : float, optional Amount of mass to be transported (default: :math:`\min\{\|\mathbf{p}\|_1, \|\mathbf{q}\|_1\}`) loss_fun : str, optional Loss function used for the solver either 'square_loss' or 'kl_loss'. G0 : ndarray, shape (ns, nt), optional Initialization of the transportation matrix numItermax : int, optional Max number of iterations tol : float, optional Stop threshold on error (>0) symmetric : bool, optional Either C1 and C2 are to be assumed symmetric or not. If let to its default None value, a symmetry test will be conducted. Else if set to True (resp. False), C1 and C2 will be assumed symmetric (resp. asymmetric). log : bool, optional return log if True verbose : bool, optional Print information along iterations Returns ------- partial_gw_dist: float Partial Gromov-Wasserstein distance log : dict log dictionary returned only if `log` is `True` Examples -------- >>> from ot.gromov import entropic_partial_gromov_wasserstein2 >>> import scipy as sp >>> a = np.array([0.25] * 4) >>> b = np.array([0.25] * 4) >>> x = np.array([1,2,100,200]).reshape((-1,1)) >>> y = np.array([3,2,98,199]).reshape((-1,1)) >>> C1 = sp.spatial.distance.cdist(x, x) >>> C2 = sp.spatial.distance.cdist(y, y) >>> np.round(entropic_partial_gromov_wasserstein2(C1, C2, a, b, 1e2), 2) 3.75 .. _references-entropic-partial-gromov-wasserstein2: References ---------- .. [12] Peyré, Gabriel, Marco Cuturi, and Justin Solomon, "Gromov-Wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning (ICML). 2016. .. [29] Chapel, L., Alaya, M., Gasso, G. (2020). "Partial Optimal Transport with Applications on Positive-Unlabeled Learning". NeurIPS. """ partial_gw, log_gw = entropic_partial_gromov_wasserstein( C1, C2, p, q, reg, m, loss_fun, G0, numItermax, tol, symmetric, True, verbose ) log_gw["T"] = partial_gw if log: return log_gw["partial_gw_dist"], log_gw else: return log_gw["partial_gw_dist"]