Source code for ot.mapping

# -*- coding: utf-8 -*-
"""
Optimal Transport maps and variants

.. warning::
    Note that by default the module is not imported in :mod:`ot`. In order to
    use it you need to explicitly import :mod:`ot.mapping`
"""

# Author: Eloi Tanguy <eloi.tanguy@u-paris.fr>
#         Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License

from .backend import get_backend, to_numpy
from .lp import emd
import numpy as np

from .optim import cg
from .utils import dist, unif, list_to_array, kernel, dots


[docs] def nearest_brenier_potential_fit(X, V, X_classes=None, a=None, b=None, strongly_convex_constant=.6, gradient_lipschitz_constant=1.4, its=100, log=False, init_method='barycentric'): r""" Computes optimal values and gradients at X for a strongly convex potential :math:`\varphi` with Lipschitz gradients on the partitions defined by `X_classes`, where :math:`\varphi` is optimal such that :math:`\nabla \varphi \#\mu \approx \nu`, given samples :math:`X = x_1, \cdots, x_n \sim \mu` and :math:`V = v_1, \cdots, v_n \sim \nu`. Finding such a potential that has the desired regularity on the partition :math:`(E_k)_{k \in [K]}` (given by the classes `X_classes`) is equivalent to finding optimal values `phi` for the :math:`\varphi(x_i)` and its gradients :math:`\nabla \varphi(x_i)` (variable`G`). In practice, these optimal values are found by solving the following problem .. math:: :nowrap: \begin{gather*} \text{min} \sum_{i,j}\pi_{i,j}\|g_i - v_j\|_2^2 \\ g_1,\cdots, g_n \in \mathbb{R}^d,\; \varphi_1, \cdots, \varphi_n \in \mathbb{R},\; \pi \in \Pi(a, b) \\ \text{s.t.}\ \forall k \in [K],\; \forall i,j \in I_k: \\ \varphi_i-\varphi_j-\langle g_j, x_i-x_j\rangle \geq c_1\|g_i - g_j\|_2^2 + c_2\|x_i-x_j\|_2^2 - c_3\langle g_j-g_i, x_j -x_i \rangle. \end{gather*} The constants :math:`c_1, c_2, c_3` only depend on `strongly_convex_constant` and `gradient_lipschitz_constant`. The constraint :math:`\pi \in \Pi(a, b)` denotes the fact that the matrix :math:`\pi` belong to the OT polytope of marginals a and b. :math:`I_k` is the subset of :math:`[n]` of the i such that :math:`x_i` is in the partition (or class) :math:`E_k`, i.e. `X_classes[i] == k`. This problem is solved by alternating over the variable :math:`\pi` and the variables :math:`\varphi_i, g_i`. For :math:`\pi`, the problem is the standard discrete OT problem, and for :math:`\varphi_i, g_i`, the problem is a convex QCQP solved using :code:`cvxpy` (ECOS solver). Accepts any compatible backend, but will perform the QCQP optimisation on Numpy arrays, and convert back at the end. .. warning:: This function requires the CVXPY library .. warning:: Accepts any backend but will convert to Numpy then back to the backend. Parameters ---------- X : array-like (n, d) reference points used to compute the optimal values phi and G V : array-like (n, d) values of the gradients at the reference points X X_classes : array-like (n,), optional classes of the reference points, defaults to a single class a : array-like (n,), optional weights for the reference points X, defaults to uniform b : array-like (n,), optional weights for the target points V, defaults to uniform strongly_convex_constant : float, optional constant for the strong convexity of the input potential phi, defaults to 0.6 gradient_lipschitz_constant : float, optional constant for the Lipschitz property of the input gradient G, defaults to 1.4 its: int, optional number of iterations, defaults to 100 log : bool, optional record log if true init_method : str, optional 'target' initialises G=V, 'barycentric' initialises at the image of X by the barycentric projection Returns ------- phi : array-like (n,) optimal values of the potential at the points X G : array-like (n, d) optimal values of the gradients at the points X log : dict, optional If input log is true, a dictionary containing the values of the variables at each iteration, as well as solver information References ---------- .. [58] François-Pierre Paty, Alexandre d’Aspremont, and Marco Cuturi. Regularity as regularization: Smooth and strongly convex brenier potentials in optimal transport. In International Conference on Artificial Intelligence and Statistics, pages 1222–1232. PMLR, 2020. See Also -------- ot.mapping.nearest_brenier_potential_predict_bounds : Predicting SSNB images on new source data ot.da.NearestBrenierPotential : BaseTransport wrapper for SSNB """ try: import cvxpy as cvx except ImportError: print('Please install CVXPY to use this function') return assert X.shape == V.shape, f"point shape should be the same as value shape, yet {X.shape} != {V.shape}" nx = get_backend(X, V, X_classes, a, b) X, V = to_numpy(X), to_numpy(V) n, d = X.shape if X_classes is not None: X_classes = to_numpy(X_classes) assert X_classes.size == n, "incorrect number of class items" else: X_classes = np.zeros(n) a = unif(n) if a is None else nx.to_numpy(a) b = unif(n) if b is None else nx.to_numpy(b) assert a.shape[-1] == b.shape[-1] == n, 'incorrect measure weight sizes' assert init_method in ['target', 'barycentric'], f"Unsupported initialization method '{init_method}'" if init_method == 'target': G_val = V else: # Init G_val with barycentric projection G_val = emd(a, b, dist(X, V)) @ V / a.reshape(n, 1) phi_val = None log_dict = { 'G_list': [], 'phi_list': [], 'its': [] } for _ in range(its): # alternate optimisation iterations cost_matrix = dist(G_val, V) # optimise the plan plan = emd(a, b, cost_matrix) # optimise the values phi and the gradients G phi = cvx.Variable(n) G = cvx.Variable((n, d)) constraints = [] cost = 0 for i in range(n): for j in range(n): cost += cvx.sum_squares(G[i, :] - V[j, :]) * plan[i, j] objective = cvx.Minimize(cost) # OT cost c1, c2, c3 = _ssnb_qcqp_constants(strongly_convex_constant, gradient_lipschitz_constant) for k in np.unique(X_classes): # constraints for the convex interpolation for i in np.where(X_classes == k)[0]: for j in np.where(X_classes == k)[0]: constraints += [ phi[i] >= phi[j] + G[j].T @ (X[i] - X[j]) + c1 * cvx.sum_squares(G[i] - G[j]) + c2 * cvx.sum_squares(X[i] - X[j]) - c3 * (G[j] - G[i]).T @ (X[j] - X[i]) ] problem = cvx.Problem(objective, constraints) problem.solve(solver=cvx.ECOS) phi_val, G_val = phi.value, G.value it_log_dict = { 'solve_time': problem.solver_stats.solve_time, 'setup_time': problem.solver_stats.setup_time, 'num_iters': problem.solver_stats.num_iters, 'status': problem.status, 'value': problem.value } if log: log_dict['its'].append(it_log_dict) log_dict['G_list'].append(G_val) log_dict['phi_list'].append(phi_val) # convert back to backend phi_val = nx.from_numpy(phi_val) G_val = nx.from_numpy(G_val) if not log: return phi_val, G_val return phi_val, G_val, log_dict
def _ssnb_qcqp_constants(strongly_convex_constant, gradient_lipschitz_constant): r""" Handy function computing the constants for the Nearest Brenier Potential QCQP problems Parameters ---------- strongly_convex_constant : float gradient_lipschitz_constant : float Returns ------- c1 : float c2 : float c3 : float """ assert 0 < strongly_convex_constant < gradient_lipschitz_constant, "incompatible regularity assumption" c = 1 / (2 * (1 - strongly_convex_constant / gradient_lipschitz_constant)) c1 = c / gradient_lipschitz_constant c2 = strongly_convex_constant * c c3 = 2 * strongly_convex_constant * c / gradient_lipschitz_constant return c1, c2, c3
[docs] def nearest_brenier_potential_predict_bounds(X, phi, G, Y, X_classes=None, Y_classes=None, strongly_convex_constant=0.6, gradient_lipschitz_constant=1.4, log=False): r""" Compute the values of the lower and upper bounding potentials at the input points Y, using the potential optimal values phi at X and their gradients G at X. The 'lower' potential corresponds to the method from :ref:`[58]`, Equation 2, while the bounding property and 'upper' potential come from :ref:`[59]`, Theorem 3.14 (taking into account the fact that this theorem's statement has a min instead of a max, which is a typo). Both potentials are optimal for the SSNB problem. If :math:`I_k` is the subset of :math:`[n]` of the i such that :math:`x_i` is in the partition (or class) :math:`E_k`, for each :math:`y \in E_k`, this function solves the convex QCQP problems, respectively for l: 'lower' and u: 'upper': .. math:: :nowrap: \begin{gather*} (\varphi_{l}(x), \nabla \varphi_l(x)) = \text{argmin}\ t, \\ t\in \mathbb{R},\; g\in \mathbb{R}^d, \\ \text{s.t.} \forall j \in I_k,\; t-\varphi_j - \langle g_j, y-x_j \rangle \geq c_1\|g - g_j\|_2^2 + c_2\|y-x_j\|_2^2 - c_3\langle g_j-g, x_j -y \rangle. \end{gather*} .. math:: :nowrap: \begin{gather*} (\varphi_{u}(x), \nabla \varphi_u(x)) = \text{argmax}\ t, \\ t\in \mathbb{R},\; g\in \mathbb{R}^d, \\ \text{s.t.} \forall i \in I_k,\; \varphi_i^* -t - \langle g, x_i-y \rangle \geq c_1\|g_i - g\|_2^2 + c_2\|x_i-y\|_2^2 - c_3\langle g-g_i, y -x_i \rangle. \end{gather*} The constants :math:`c_1, c_2, c_3` only depend on `strongly_convex_constant` and `gradient_lipschitz_constant`. .. warning:: This function requires the CVXPY library .. warning:: Accepts any backend but will convert to Numpy then back to the backend. Parameters ---------- X : array-like (n, d) reference points used to compute the optimal values phi and G X_classes : array-like (n,) classes of the reference points phi : array-like (n,) optimal values of the potential at the points X G : array-like (n, d) optimal values of the gradients at the points X Y : array-like (m, d) input points X_classes : array-like (n,), optional classes of the reference points, defaults to a single class Y_classes : array_like (m,), optional classes of the input points, defaults to a single class strongly_convex_constant : float, optional constant for the strong convexity of the input potential phi, defaults to 0.6 gradient_lipschitz_constant : float, optional constant for the Lipschitz property of the input gradient G, defaults to 1.4 log : bool, optional record log if true Returns ------- phi_lu: array-like (2, m) values of the lower and upper bounding potentials at Y G_lu: array-like (2, m, d) gradients of the lower and upper bounding potentials at Y log : dict, optional If input log is true, a dictionary containing solver information References ---------- .. [58] François-Pierre Paty, Alexandre d’Aspremont, and Marco Cuturi. Regularity as regularization: Smooth and strongly convex brenier potentials in optimal transport. In International Conference on Artificial Intelligence and Statistics, pages 1222–1232. PMLR, 2020. .. [59] Adrien B Taylor. Convex interpolation and performance estimation of first-order methods for convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2017. See Also -------- ot.mapping.nearest_brenier_potential_fit : Fitting the SSNB on source and target data ot.da.NearestBrenierPotential : BaseTransport wrapper for SSNB """ try: import cvxpy as cvx except ImportError: print('Please install CVXPY to use this function') return nx = get_backend(X, phi, G, Y) X = to_numpy(X) phi = to_numpy(phi) G = to_numpy(G) Y = to_numpy(Y) m, d = Y.shape if Y_classes is not None: Y_classes = to_numpy(Y_classes) assert Y_classes.size == m, 'wrong number of class items for Y' else: Y_classes = np.zeros(m) assert X.shape[1] == d, f'incompatible dimensions between X: {X.shape} and Y: {Y.shape}' n, _ = X.shape if X_classes is not None: X_classes = to_numpy(X_classes) assert X_classes.size == n, "incorrect number of class items" else: X_classes = np.zeros(n) assert X_classes.size == n, 'wrong number of class items for X' c1, c2, c3 = _ssnb_qcqp_constants(strongly_convex_constant, gradient_lipschitz_constant) phi_lu = np.zeros((2, m)) G_lu = np.zeros((2, m, d)) log_dict = {} for y_idx in range(m): log_item = {} # lower bound phi_l_y = cvx.Variable(1) G_l_y = cvx.Variable(d) objective = cvx.Minimize(phi_l_y) constraints = [] k = Y_classes[y_idx] for j in np.where(X_classes == k)[0]: constraints += [ phi_l_y >= phi[j] + G[j].T @ (Y[y_idx] - X[j]) + c1 * cvx.sum_squares(G_l_y - G[j]) + c2 * cvx.sum_squares(Y[y_idx] - X[j]) - c3 * (G[j] - G_l_y).T @ (X[j] - Y[y_idx]) ] problem = cvx.Problem(objective, constraints) problem.solve(solver=cvx.ECOS) phi_lu[0, y_idx] = phi_l_y.value G_lu[0, y_idx] = G_l_y.value if log: log_item['l'] = { 'solve_time': problem.solver_stats.solve_time, 'setup_time': problem.solver_stats.setup_time, 'num_iters': problem.solver_stats.num_iters, 'status': problem.status, 'value': problem.value } # upper bound phi_u_y = cvx.Variable(1) G_u_y = cvx.Variable(d) objective = cvx.Maximize(phi_u_y) constraints = [] for i in np.where(X_classes == k)[0]: constraints += [ phi[i] >= phi_u_y + G_u_y.T @ (X[i] - Y[y_idx]) + c1 * cvx.sum_squares(G[i] - G_u_y) + c2 * cvx.sum_squares(X[i] - Y[y_idx]) - c3 * (G_u_y - G[i]).T @ (Y[y_idx] - X[i]) ] problem = cvx.Problem(objective, constraints) problem.solve(solver=cvx.ECOS) phi_lu[1, y_idx] = phi_u_y.value G_lu[1, y_idx] = G_u_y.value if log: log_item['u'] = { 'solve_time': problem.solver_stats.solve_time, 'setup_time': problem.solver_stats.setup_time, 'num_iters': problem.solver_stats.num_iters, 'status': problem.status, 'value': problem.value } log_dict[y_idx] = log_item phi_lu, G_lu = nx.from_numpy(phi_lu), nx.from_numpy(G_lu) if not log: return phi_lu, G_lu return phi_lu, G_lu, log_dict
[docs] def joint_OT_mapping_linear(xs, xt, mu=1, eta=0.001, bias=False, verbose=False, verbose2=False, numItermax=100, numInnerItermax=10, stopInnerThr=1e-6, stopThr=1e-5, log=False, **kwargs): r"""Joint OT and linear mapping estimation as proposed in :ref:`[8] <references-joint-OT-mapping-linear>`. The function solves the following optimization problem: .. math:: \min_{\gamma,L}\quad \|L(\mathbf{X_s}) - n_s\gamma \mathbf{X_t} \|^2_F + \mu \langle \gamma, \mathbf{M} \rangle_F + \eta \|L - \mathbf{I}\|^2_F s.t. \ \gamma \mathbf{1} = \mathbf{a} \gamma^T \mathbf{1} = \mathbf{b} \gamma \geq 0 where : - :math:`\mathbf{M}` is the (`ns`, `nt`) squared euclidean cost matrix between samples in :math:`\mathbf{X_s}` and :math:`\mathbf{X_t}` (scaled by :math:`n_s`) - :math:`L` is a :math:`d\times d` linear operator that approximates the barycentric mapping - :math:`\mathbf{I}` is the identity matrix (neutral linear mapping) - :math:`\mathbf{a}` and :math:`\mathbf{b}` are uniform source and target weights The problem consist in solving jointly an optimal transport matrix :math:`\gamma` and a linear mapping that fits the barycentric mapping :math:`n_s\gamma \mathbf{X_t}`. One can also estimate a mapping with constant bias (see supplementary material of :ref:`[8] <references-joint-OT-mapping-linear>`) using the bias optional argument. The algorithm used for solving the problem is the block coordinate descent that alternates between updates of :math:`\mathbf{G}` (using conditional gradient) and the update of :math:`\mathbf{L}` using a classical least square solver. Parameters ---------- xs : array-like (ns,d) samples in the source domain xt : array-like (nt,d) samples in the target domain mu : float,optional Weight for the linear OT loss (>0) eta : float, optional Regularization term for the linear mapping L (>0) bias : bool,optional Estimate linear mapping with constant bias numItermax : int, optional Max number of BCD iterations stopThr : float, optional Stop threshold on relative loss decrease (>0) numInnerItermax : int, optional Max number of iterations (inner CG solver) stopInnerThr : float, optional Stop threshold on error (inner CG solver) (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (ns, nt) array-like Optimal transportation matrix for the given parameters L : (d, d) array-like Linear mapping matrix ((:math:`d+1`, `d`) if bias) log : dict log dictionary return only if log==True in parameters .. _references-joint-OT-mapping-linear: References ---------- .. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for discrete optimal transport", Neural Information Processing Systems (NIPS), 2016. See Also -------- ot.lp.emd : Unregularized OT ot.optim.cg : General regularized OT """ xs, xt = list_to_array(xs, xt) nx = get_backend(xs, xt) ns, nt, d = xs.shape[0], xt.shape[0], xt.shape[1] if bias: xs1 = nx.concatenate((xs, nx.ones((ns, 1), type_as=xs)), axis=1) xstxs = nx.dot(xs1.T, xs1) Id = nx.eye(d + 1, type_as=xs) Id[-1] = 0 I0 = Id[:, :-1] def sel(x): return x[:-1, :] else: xs1 = xs xstxs = nx.dot(xs1.T, xs1) Id = nx.eye(d, type_as=xs) I0 = Id def sel(x): return x if log: log = {'err': []} a = unif(ns, type_as=xs) b = unif(nt, type_as=xt) M = dist(xs, xt) * ns G = emd(a, b, M) vloss = [] def loss(L, G): """Compute full loss""" return ( nx.sum((nx.dot(xs1, L) - ns * nx.dot(G, xt)) ** 2) + mu * nx.sum(G * M) + eta * nx.sum(sel(L - I0) ** 2) ) def solve_L(G): """ solve L problem with fixed G (least square)""" xst = ns * nx.dot(G, xt) return nx.solve(xstxs + eta * Id, nx.dot(xs1.T, xst) + eta * I0) def solve_G(L, G0): """Update G with CG algorithm""" xsi = nx.dot(xs1, L) def f(G): return nx.sum((xsi - ns * nx.dot(G, xt)) ** 2) def df(G): return -2 * ns * nx.dot(xsi - ns * nx.dot(G, xt), xt.T) G = cg(a, b, M, 1.0 / mu, f, df, G0=G0, numItermax=numInnerItermax, stopThr=stopInnerThr) return G L = solve_L(G) vloss.append(loss(L, G)) if verbose: print('{:5s}|{:12s}|{:8s}'.format( 'It.', 'Loss', 'Delta loss') + '\n' + '-' * 32) print('{:5d}|{:8e}|{:8e}'.format(0, vloss[-1], 0)) # init loop if numItermax > 0: loop = 1 else: loop = 0 it = 0 while loop: it += 1 # update G G = solve_G(L, G) # update L L = solve_L(G) vloss.append(loss(L, G)) if it >= numItermax: loop = 0 if abs(vloss[-1] - vloss[-2]) / abs(vloss[-2]) < stopThr: loop = 0 if verbose: if it % 20 == 0: print('{:5s}|{:12s}|{:8s}'.format( 'It.', 'Loss', 'Delta loss') + '\n' + '-' * 32) print('{:5d}|{:8e}|{:8e}'.format( it, vloss[-1], (vloss[-1] - vloss[-2]) / abs(vloss[-2]))) if log: log['loss'] = vloss return G, L, log else: return G, L
[docs] def joint_OT_mapping_kernel(xs, xt, mu=1, eta=0.001, kerneltype='gaussian', sigma=1, bias=False, verbose=False, verbose2=False, numItermax=100, numInnerItermax=10, stopInnerThr=1e-6, stopThr=1e-5, log=False, **kwargs): r"""Joint OT and nonlinear mapping estimation with kernels as proposed in :ref:`[8] <references-joint-OT-mapping-kernel>`. The function solves the following optimization problem: .. math:: \min_{\gamma, L\in\mathcal{H}}\quad \|L(\mathbf{X_s}) - n_s\gamma \mathbf{X_t}\|^2_F + \mu \langle \gamma, \mathbf{M} \rangle_F + \eta \|L\|^2_\mathcal{H} s.t. \ \gamma \mathbf{1} = \mathbf{a} \gamma^T \mathbf{1} = \mathbf{b} \gamma \geq 0 where : - :math:`\mathbf{M}` is the (`ns`, `nt`) squared euclidean cost matrix between samples in :math:`\mathbf{X_s}` and :math:`\mathbf{X_t}` (scaled by :math:`n_s`) - :math:`L` is a :math:`n_s \times d` linear operator on a kernel matrix that approximates the barycentric mapping - :math:`\mathbf{a}` and :math:`\mathbf{b}` are uniform source and target weights The problem consist in solving jointly an optimal transport matrix :math:`\gamma` and the nonlinear mapping that fits the barycentric mapping :math:`n_s\gamma \mathbf{X_t}`. One can also estimate a mapping with constant bias (see supplementary material of :ref:`[8] <references-joint-OT-mapping-kernel>`) using the bias optional argument. The algorithm used for solving the problem is the block coordinate descent that alternates between updates of :math:`\mathbf{G}` (using conditional gradient) and the update of :math:`\mathbf{L}` using a classical kernel least square solver. Parameters ---------- xs : array-like (ns,d) samples in the source domain xt : array-like (nt,d) samples in the target domain mu : float,optional Weight for the linear OT loss (>0) eta : float, optional Regularization term for the linear mapping L (>0) kerneltype : str,optional kernel used by calling function :py:func:`ot.utils.kernel` (gaussian by default) sigma : float, optional Gaussian kernel bandwidth. bias : bool,optional Estimate linear mapping with constant bias verbose : bool, optional Print information along iterations verbose2 : bool, optional Print information along iterations numItermax : int, optional Max number of BCD iterations numInnerItermax : int, optional Max number of iterations (inner CG solver) stopInnerThr : float, optional Stop threshold on error (inner CG solver) (>0) stopThr : float, optional Stop threshold on relative loss decrease (>0) log : bool, optional record log if True Returns ------- gamma : (ns, nt) array-like Optimal transportation matrix for the given parameters L : (ns, d) array-like Nonlinear mapping matrix ((:math:`n_s+1`, `d`) if bias) log : dict log dictionary return only if log==True in parameters .. _references-joint-OT-mapping-kernel: References ---------- .. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard, "Mapping estimation for discrete optimal transport", Neural Information Processing Systems (NIPS), 2016. See Also -------- ot.lp.emd : Unregularized OT ot.optim.cg : General regularized OT """ xs, xt = list_to_array(xs, xt) nx = get_backend(xs, xt) ns, nt = xs.shape[0], xt.shape[0] K = kernel(xs, xs, method=kerneltype, sigma=sigma) if bias: K1 = nx.concatenate((K, nx.ones((ns, 1), type_as=xs)), axis=1) Id = nx.eye(ns + 1, type_as=xs) Id[-1] = 0 Kp = nx.eye(ns + 1, type_as=xs) Kp[:ns, :ns] = K # ls regu # K0 = K1.T.dot(K1)+eta*I # Kreg=I # RKHS regul K0 = nx.dot(K1.T, K1) + eta * Kp Kreg = Kp else: K1 = K Id = nx.eye(ns, type_as=xs) # ls regul # K0 = K1.T.dot(K1)+eta*I # Kreg=I # proper kernel ridge K0 = K + eta * Id Kreg = K if log: log = {'err': []} a = unif(ns, type_as=xs) b = unif(nt, type_as=xt) M = dist(xs, xt) * ns G = emd(a, b, M) vloss = [] def loss(L, G): """Compute full loss""" return ( nx.sum((nx.dot(K1, L) - ns * nx.dot(G, xt)) ** 2) + mu * nx.sum(G * M) + eta * nx.trace(dots(L.T, Kreg, L)) ) def solve_L_nobias(G): """ solve L problem with fixed G (least square)""" xst = ns * nx.dot(G, xt) return nx.solve(K0, xst) def solve_L_bias(G): """ solve L problem with fixed G (least square)""" xst = ns * nx.dot(G, xt) return nx.solve(K0, nx.dot(K1.T, xst)) def solve_G(L, G0): """Update G with CG algorithm""" xsi = nx.dot(K1, L) def f(G): return nx.sum((xsi - ns * nx.dot(G, xt)) ** 2) def df(G): return -2 * ns * nx.dot(xsi - ns * nx.dot(G, xt), xt.T) G = cg(a, b, M, 1.0 / mu, f, df, G0=G0, numItermax=numInnerItermax, stopThr=stopInnerThr) return G if bias: solve_L = solve_L_bias else: solve_L = solve_L_nobias L = solve_L(G) vloss.append(loss(L, G)) if verbose: print('{:5s}|{:12s}|{:8s}'.format( 'It.', 'Loss', 'Delta loss') + '\n' + '-' * 32) print('{:5d}|{:8e}|{:8e}'.format(0, vloss[-1], 0)) # init loop if numItermax > 0: loop = 1 else: loop = 0 it = 0 while loop: it += 1 # update G G = solve_G(L, G) # update L L = solve_L(G) vloss.append(loss(L, G)) if it >= numItermax: loop = 0 if abs(vloss[-1] - vloss[-2]) / abs(vloss[-2]) < stopThr: loop = 0 if verbose: if it % 20 == 0: print('{:5s}|{:12s}|{:8s}'.format( 'It.', 'Loss', 'Delta loss') + '\n' + '-' * 32) print('{:5d}|{:8e}|{:8e}'.format( it, vloss[-1], (vloss[-1] - vloss[-2]) / abs(vloss[-2]))) if log: log['loss'] = vloss return G, L, log else: return G, L