Source code for ot.lp

# -*- coding: utf-8 -*-
"""
Solvers for the original linear program OT problem.

"""

# Author: Remi Flamary <remi.flamary@unice.fr>
#
# License: MIT License

import numpy as np
import warnings

from . import cvx
from .cvx import barycenter
from .dmmot import dmmot_monge_1dgrid_loss, dmmot_monge_1dgrid_optimize

# import compiled emd
from .emd_wrap import emd_c, check_result, emd_1d_sorted
from .solver_1d import (
    emd_1d,
    emd2_1d,
    wasserstein_1d,
    binary_search_circle,
    wasserstein_circle,
    semidiscrete_wasserstein2_unif_circle,
)

from ..utils import dist, list_to_array
from ..backend import get_backend

__all__ = [
    "emd",
    "emd2",
    "barycenter",
    "free_support_barycenter",
    "cvx",
    "emd_1d_sorted",
    "emd_1d",
    "emd2_1d",
    "wasserstein_1d",
    "generalized_free_support_barycenter",
    "binary_search_circle",
    "wasserstein_circle",
    "semidiscrete_wasserstein2_unif_circle",
    "dmmot_monge_1dgrid_loss",
    "dmmot_monge_1dgrid_optimize",
]


[docs] def check_number_threads(numThreads): """Checks whether or not the requested number of threads has a valid value. Parameters ---------- numThreads : int or str The requested number of threads, should either be a strictly positive integer or "max" or None Returns ------- numThreads : int Corrected number of threads """ if (numThreads is None) or ( isinstance(numThreads, str) and numThreads.lower() == "max" ): return -1 if (not isinstance(numThreads, int)) or numThreads < 1: raise ValueError( 'numThreads should either be "max" or a strictly positive integer' ) return numThreads
[docs] def center_ot_dual(alpha0, beta0, a=None, b=None): r"""Center dual OT potentials w.r.t. their weights The main idea of this function is to find unique dual potentials that ensure some kind of centering/fairness. The main idea is to find dual potentials that lead to the same final objective value for both source and targets (see below for more details). It will help having stability when multiple calling of the OT solver with small changes. Basically we add another constraint to the potential that will not change the objective value but will ensure unicity. The constraint is the following: .. math:: \alpha^T \mathbf{a} = \beta^T \mathbf{b} in addition to the OT problem constraints. since :math:`\sum_i a_i=\sum_j b_j` this can be solved by adding/removing a constant from both :math:`\alpha_0` and :math:`\beta_0`. .. math:: c &= \frac{\beta_0^T \mathbf{b} - \alpha_0^T \mathbf{a}}{\mathbf{1}^T \mathbf{b} + \mathbf{1}^T \mathbf{a}} \alpha &= \alpha_0 + c \beta &= \beta_0 + c Parameters ---------- alpha0 : (ns,) numpy.ndarray, float64 Source dual potential beta0 : (nt,) numpy.ndarray, float64 Target dual potential a : (ns,) numpy.ndarray, float64 Source histogram (uniform weight if empty list) b : (nt,) numpy.ndarray, float64 Target histogram (uniform weight if empty list) Returns ------- alpha : (ns,) numpy.ndarray, float64 Source centered dual potential beta : (nt,) numpy.ndarray, float64 Target centered dual potential """ # if no weights are provided, use uniform if a is None: a = np.ones(alpha0.shape[0]) / alpha0.shape[0] if b is None: b = np.ones(beta0.shape[0]) / beta0.shape[0] # compute constant that balances the weighted sums of the duals c = (b.dot(beta0) - a.dot(alpha0)) / (a.sum() + b.sum()) # update duals alpha = alpha0 + c beta = beta0 - c return alpha, beta
[docs] def estimate_dual_null_weights(alpha0, beta0, a, b, M): r"""Estimate feasible values for 0-weighted dual potentials The feasible values are computed efficiently but rather coarsely. .. warning:: This function is necessary because the C++ solver in `emd_c` discards all samples in the distributions with zeros weights. This means that while the primal variable (transport matrix) is exact, the solver only returns feasible dual potentials on the samples with weights different from zero. First we compute the constraints violations: .. math:: \mathbf{V} = \alpha + \beta^T - \mathbf{M} Next we compute the max amount of violation per row (:math:`\alpha`) and columns (:math:`beta`) .. math:: \mathbf{v^a}_i = \max_j \mathbf{V}_{i,j} \mathbf{v^b}_j = \max_i \mathbf{V}_{i,j} Finally we update the dual potential with 0 weights if a constraint is violated .. math:: \alpha_i = \alpha_i - \mathbf{v^a}_i \quad \text{ if } \mathbf{a}_i=0 \text{ and } \mathbf{v^a}_i>0 \beta_j = \beta_j - \mathbf{v^b}_j \quad \text{ if } \mathbf{b}_j=0 \text{ and } \mathbf{v^b}_j > 0 In the end the dual potentials are centered using function :py:func:`ot.lp.center_ot_dual`. Note that all those updates do not change the objective value of the solution but provide dual potentials that do not violate the constraints. Parameters ---------- alpha0 : (ns,) numpy.ndarray, float64 Source dual potential beta0 : (nt,) numpy.ndarray, float64 Target dual potential alpha0 : (ns,) numpy.ndarray, float64 Source dual potential beta0 : (nt,) numpy.ndarray, float64 Target dual potential a : (ns,) numpy.ndarray, float64 Source distribution (uniform weights if empty list) b : (nt,) numpy.ndarray, float64 Target distribution (uniform weights if empty list) M : (ns,nt) numpy.ndarray, float64 Loss matrix (c-order array with type float64) Returns ------- alpha : (ns,) numpy.ndarray, float64 Source corrected dual potential beta : (nt,) numpy.ndarray, float64 Target corrected dual potential """ # binary indexing of non-zeros weights asel = a != 0 bsel = b != 0 # compute dual constraints violation constraint_violation = alpha0[:, None] + beta0[None, :] - M # Compute largest violation per line and columns aviol = np.max(constraint_violation, 1) bviol = np.max(constraint_violation, 0) # update corrects violation of alpha_up = -1 * ~asel * np.maximum(aviol, 0) beta_up = -1 * ~bsel * np.maximum(bviol, 0) alpha = alpha0 + alpha_up beta = beta0 + beta_up return center_ot_dual(alpha, beta, a, b)
[docs] def emd( a, b, M, numItermax=100000, log=False, center_dual=True, numThreads=1, check_marginals=True, ): r"""Solves the Earth Movers distance problem and returns the OT matrix .. math:: \gamma = \mathop{\arg \min}_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F s.t. \ \gamma \mathbf{1} = \mathbf{a} \gamma^T \mathbf{1} = \mathbf{b} \gamma \geq 0 where : - :math:`\mathbf{M}` is the metric cost matrix - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the sample weights .. warning:: Note that the :math:`\mathbf{M}` matrix in numpy needs to be a C-order numpy.array in float64 format. It will be converted if not in this format .. note:: This function is backend-compatible and will work on arrays from all compatible backends. But the algorithm uses the C++ CPU backend which can lead to copy overhead on GPU arrays. .. note:: This function will cast the computed transport plan to the data type of the provided input with the following priority: :math:`\mathbf{a}`, then :math:`\mathbf{b}`, then :math:`\mathbf{M}` if marginals are not provided. Casting to an integer tensor might result in a loss of precision. If this behaviour is unwanted, please make sure to provide a floating point input. .. note:: An error will be raised if the vectors :math:`\mathbf{a}` and :math:`\mathbf{b}` do not sum to the same value. Uses the algorithm proposed in :ref:`[1] <references-emd>`. Parameters ---------- a : (ns,) array-like, float Source histogram (uniform weight if empty list) b : (nt,) array-like, float Target histogram (uniform weight if empty list) M : (ns,nt) array-like, float Loss matrix (c-order array in numpy with type float64) numItermax : int, optional (default=100000) The maximum number of iterations before stopping the optimization algorithm if it has not converged. log: bool, optional (default=False) If True, returns a dictionary containing the cost and dual variables. Otherwise returns only the optimal transportation matrix. center_dual: boolean, optional (default=True) If True, centers the dual potential using function :py:func:`ot.lp.center_ot_dual`. numThreads: int or "max", optional (default=1, i.e. OpenMP is not used) If compiled with OpenMP, chooses the number of threads to parallelize. "max" selects the highest number possible. check_marginals: bool, optional (default=True) If True, checks that the marginals mass are equal. If False, skips the check. Returns ------- gamma: array-like, shape (ns, nt) Optimal transportation matrix for the given parameters log: dict, optional If input log is true, a dictionary containing the cost and dual variables and exit status Examples -------- Simple example with obvious solution. The function emd accepts lists and perform automatic conversion to numpy arrays >>> import ot >>> a=[.5,.5] >>> b=[.5,.5] >>> M=[[0.,1.],[1.,0.]] >>> ot.emd(a, b, M) array([[0.5, 0. ], [0. , 0.5]]) .. _references-emd: References ---------- .. [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). Displacement interpolation using Lagrangian mass transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM. See Also -------- ot.bregman.sinkhorn : Entropic regularized OT ot.optim.cg : General regularized OT """ a, b, M = list_to_array(a, b, M) nx = get_backend(M, a, b) if len(a) != 0: type_as = a elif len(b) != 0: type_as = b else: type_as = M # if empty array given then use uniform distributions if len(a) == 0: a = nx.ones((M.shape[0],), type_as=type_as) / M.shape[0] if len(b) == 0: b = nx.ones((M.shape[1],), type_as=type_as) / M.shape[1] # convert to numpy M, a, b = nx.to_numpy(M, a, b) # ensure float64 a = np.asarray(a, dtype=np.float64) b = np.asarray(b, dtype=np.float64) M = np.asarray(M, dtype=np.float64, order="C") # if empty array given then use uniform distributions if len(a) == 0: a = np.ones((M.shape[0],), dtype=np.float64) / M.shape[0] if len(b) == 0: b = np.ones((M.shape[1],), dtype=np.float64) / M.shape[1] assert ( a.shape[0] == M.shape[0] and b.shape[0] == M.shape[1] ), "Dimension mismatch, check dimensions of M with a and b" # ensure that same mass if check_marginals: np.testing.assert_almost_equal( a.sum(0), b.sum(0), err_msg="a and b vector must have the same sum", decimal=6, ) b = b * a.sum() / b.sum() asel = a != 0 bsel = b != 0 numThreads = check_number_threads(numThreads) G, cost, u, v, result_code = emd_c(a, b, M, numItermax, numThreads) if center_dual: u, v = center_ot_dual(u, v, a, b) if np.any(~asel) or np.any(~bsel): u, v = estimate_dual_null_weights(u, v, a, b, M) result_code_string = check_result(result_code) if not nx.is_floating_point(type_as): warnings.warn( "Input histogram consists of integer. The transport plan will be " "casted accordingly, possibly resulting in a loss of precision. " "If this behaviour is unwanted, please make sure your input " "histogram consists of floating point elements.", stacklevel=2, ) if log: log = {} log["cost"] = cost log["u"] = nx.from_numpy(u, type_as=type_as) log["v"] = nx.from_numpy(v, type_as=type_as) log["warning"] = result_code_string log["result_code"] = result_code return nx.from_numpy(G, type_as=type_as), log return nx.from_numpy(G, type_as=type_as)
[docs] def emd2( a, b, M, processes=1, numItermax=100000, log=False, return_matrix=False, center_dual=True, numThreads=1, check_marginals=True, ): r"""Solves the Earth Movers distance problem and returns the loss .. math:: \min_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F s.t. \ \gamma \mathbf{1} = \mathbf{a} \gamma^T \mathbf{1} = \mathbf{b} \gamma \geq 0 where : - :math:`\mathbf{M}` is the metric cost matrix - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the sample weights .. note:: This function is backend-compatible and will work on arrays from all compatible backends. But the algorithm uses the C++ CPU backend which can lead to copy overhead on GPU arrays. .. note:: This function will cast the computed transport plan and transportation loss to the data type of the provided input with the following priority: :math:`\mathbf{a}`, then :math:`\mathbf{b}`, then :math:`\mathbf{M}` if marginals are not provided. Casting to an integer tensor might result in a loss of precision. If this behaviour is unwanted, please make sure to provide a floating point input. .. note:: An error will be raised if the vectors :math:`\mathbf{a}` and :math:`\mathbf{b}` do not sum to the same value. Uses the algorithm proposed in :ref:`[1] <references-emd2>`. Parameters ---------- a : (ns,) array-like, float64 Source histogram (uniform weight if empty list) b : (nt,) array-like, float64 Target histogram (uniform weight if empty list) M : (ns,nt) array-like, float64 Loss matrix (for numpy c-order array with type float64) processes : int, optional (default=1) Nb of processes used for multiple emd computation (deprecated) numItermax : int, optional (default=100000) The maximum number of iterations before stopping the optimization algorithm if it has not converged. log: boolean, optional (default=False) If True, returns a dictionary containing dual variables. Otherwise returns only the optimal transportation cost. return_matrix: boolean, optional (default=False) If True, returns the optimal transportation matrix in the log. center_dual: boolean, optional (default=True) If True, centers the dual potential using function :py:func:`ot.lp.center_ot_dual`. numThreads: int or "max", optional (default=1, i.e. OpenMP is not used) If compiled with OpenMP, chooses the number of threads to parallelize. "max" selects the highest number possible. check_marginals: bool, optional (default=True) If True, checks that the marginals mass are equal. If False, skips the check. Returns ------- W: float, array-like Optimal transportation loss for the given parameters log: dict If input log is true, a dictionary containing dual variables and exit status Examples -------- Simple example with obvious solution. The function emd accepts lists and perform automatic conversion to numpy arrays >>> import ot >>> a=[.5,.5] >>> b=[.5,.5] >>> M=[[0.,1.],[1.,0.]] >>> ot.emd2(a,b,M) 0.0 .. _references-emd2: References ---------- .. [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). Displacement interpolation using Lagrangian mass transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM. See Also -------- ot.bregman.sinkhorn : Entropic regularized OT ot.optim.cg : General regularized OT """ a, b, M = list_to_array(a, b, M) nx = get_backend(M, a, b) if len(a) != 0: type_as = a elif len(b) != 0: type_as = b else: type_as = M # if empty array given then use uniform distributions if len(a) == 0: a = nx.ones((M.shape[0],), type_as=type_as) / M.shape[0] if len(b) == 0: b = nx.ones((M.shape[1],), type_as=type_as) / M.shape[1] # store original tensors a0, b0, M0 = a, b, M # convert to numpy M, a, b = nx.to_numpy(M, a, b) a = np.asarray(a, dtype=np.float64) b = np.asarray(b, dtype=np.float64) M = np.asarray(M, dtype=np.float64, order="C") assert ( a.shape[0] == M.shape[0] and b.shape[0] == M.shape[1] ), "Dimension mismatch, check dimensions of M with a and b" # ensure that same mass if check_marginals: np.testing.assert_almost_equal( a.sum(0), b.sum(0, keepdims=True), err_msg="a and b vector must have the same sum", decimal=6, ) b = b * a.sum(0) / b.sum(0, keepdims=True) asel = a != 0 numThreads = check_number_threads(numThreads) if log or return_matrix: def f(b): bsel = b != 0 G, cost, u, v, result_code = emd_c(a, b, M, numItermax, numThreads) if center_dual: u, v = center_ot_dual(u, v, a, b) if np.any(~asel) or np.any(~bsel): u, v = estimate_dual_null_weights(u, v, a, b, M) result_code_string = check_result(result_code) log = {} if not nx.is_floating_point(type_as): warnings.warn( "Input histogram consists of integer. The transport plan will be " "casted accordingly, possibly resulting in a loss of precision. " "If this behaviour is unwanted, please make sure your input " "histogram consists of floating point elements.", stacklevel=2, ) G = nx.from_numpy(G, type_as=type_as) if return_matrix: log["G"] = G log["u"] = nx.from_numpy(u, type_as=type_as) log["v"] = nx.from_numpy(v, type_as=type_as) log["warning"] = result_code_string log["result_code"] = result_code cost = nx.set_gradients( nx.from_numpy(cost, type_as=type_as), (a0, b0, M0), (log["u"] - nx.mean(log["u"]), log["v"] - nx.mean(log["v"]), G), ) return [cost, log] else: def f(b): bsel = b != 0 G, cost, u, v, result_code = emd_c(a, b, M, numItermax, numThreads) if center_dual: u, v = center_ot_dual(u, v, a, b) if np.any(~asel) or np.any(~bsel): u, v = estimate_dual_null_weights(u, v, a, b, M) if not nx.is_floating_point(type_as): warnings.warn( "Input histogram consists of integer. The transport plan will be " "casted accordingly, possibly resulting in a loss of precision. " "If this behaviour is unwanted, please make sure your input " "histogram consists of floating point elements.", stacklevel=2, ) G = nx.from_numpy(G, type_as=type_as) cost = nx.set_gradients( nx.from_numpy(cost, type_as=type_as), (a0, b0, M0), ( nx.from_numpy(u - np.mean(u), type_as=type_as), nx.from_numpy(v - np.mean(v), type_as=type_as), G, ), ) check_result(result_code) return cost if len(b.shape) == 1: return f(b) nb = b.shape[1] if processes > 1: warnings.warn( "The 'processes' parameter has been deprecated. " "Multiprocessing should be done outside of POT." ) res = list(map(f, [b[:, i].copy() for i in range(nb)])) return res
[docs] def free_support_barycenter( measures_locations, measures_weights, X_init, b=None, weights=None, numItermax=100, stopThr=1e-7, verbose=False, log=None, numThreads=1, ): r""" Solves the free support (locations of the barycenters are optimized, not the weights) Wasserstein barycenter problem (i.e. the weighted Frechet mean for the 2-Wasserstein distance), formally: .. math:: \min_\mathbf{X} \quad \sum_{i=1}^N w_i W_2^2(\mathbf{b}, \mathbf{X}, \mathbf{a}_i, \mathbf{X}_i) where : - :math:`w \in \mathbb{(0, 1)}^{N}`'s are the barycenter weights and sum to one - `measure_weights` denotes the :math:`\mathbf{a}_i \in \mathbb{R}^{k_i}`: empirical measures weights (on simplex) - `measures_locations` denotes the :math:`\mathbf{X}_i \in \mathbb{R}^{k_i, d}`: empirical measures atoms locations - :math:`\mathbf{b} \in \mathbb{R}^{k}` is the desired weights vector of the barycenter This problem is considered in :ref:`[20] <references-free-support-barycenter>` (Algorithm 2). There are two differences with the following codes: - we do not optimize over the weights - we do not do line search for the locations updates, we use i.e. :math:`\theta = 1` in :ref:`[20] <references-free-support-barycenter>` (Algorithm 2). This can be seen as a discrete implementation of the fixed-point algorithm of :ref:`[43] <references-free-support-barycenter>` proposed in the continuous setting. Parameters ---------- measures_locations : list of N (k_i,d) array-like The discrete support of a measure supported on :math:`k_i` locations of a `d`-dimensional space (:math:`k_i` can be different for each element of the list) measures_weights : list of N (k_i,) array-like Numpy arrays where each numpy array has :math:`k_i` non-negatives values summing to one representing the weights of each discrete input measure X_init : (k,d) array-like Initialization of the support locations (on `k` atoms) of the barycenter b : (k,) array-like Initialization of the weights of the barycenter (non-negatives, sum to 1) weights : (N,) array-like Initialization of the coefficients of the barycenter (non-negatives, sum to 1) numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True numThreads: int or "max", optional (default=1, i.e. OpenMP is not used) If compiled with OpenMP, chooses the number of threads to parallelize. "max" selects the highest number possible. Returns ------- X : (k,d) array-like Support locations (on k atoms) of the barycenter .. _references-free-support-barycenter: References ---------- .. [20] Cuturi, Marco, and Arnaud Doucet. "Fast computation of Wasserstein barycenters." International Conference on Machine Learning. 2014. .. [43] Álvarez-Esteban, Pedro C., et al. "A fixed-point approach to barycenters in Wasserstein space." Journal of Mathematical Analysis and Applications 441.2 (2016): 744-762. """ nx = get_backend(*measures_locations, *measures_weights, X_init) iter_count = 0 N = len(measures_locations) k = X_init.shape[0] d = X_init.shape[1] if b is None: b = nx.ones((k,), type_as=X_init) / k if weights is None: weights = nx.ones((N,), type_as=X_init) / N X = X_init log_dict = {} displacement_square_norms = [] displacement_square_norm = stopThr + 1.0 while displacement_square_norm > stopThr and iter_count < numItermax: T_sum = nx.zeros((k, d), type_as=X_init) for measure_locations_i, measure_weights_i, weight_i in zip( measures_locations, measures_weights, weights ): M_i = dist(X, measure_locations_i) T_i = emd(b, measure_weights_i, M_i, numThreads=numThreads) T_sum = T_sum + weight_i * 1.0 / b[:, None] * nx.dot( T_i, measure_locations_i ) displacement_square_norm = nx.sum((T_sum - X) ** 2) if log: displacement_square_norms.append(displacement_square_norm) X = T_sum if verbose: print( "iteration %d, displacement_square_norm=%f\n", iter_count, displacement_square_norm, ) iter_count += 1 if log: log_dict["displacement_square_norms"] = displacement_square_norms return X, log_dict else: return X
[docs] def generalized_free_support_barycenter( X_list, a_list, P_list, n_samples_bary, Y_init=None, b=None, weights=None, numItermax=100, stopThr=1e-7, verbose=False, log=None, numThreads=1, eps=0, ): r""" Solves the free support generalized Wasserstein barycenter problem: finding a barycenter (a discrete measure with a fixed amount of points of uniform weights) whose respective projections fit the input measures. More formally: .. math:: \min_\gamma \quad \sum_{i=1}^p w_i W_2^2(\nu_i, \mathbf{P}_i\#\gamma) where : - :math:`\gamma = \sum_{l=1}^n b_l\delta_{y_l}` is the desired barycenter with each :math:`y_l \in \mathbb{R}^d` - :math:`\mathbf{b} \in \mathbb{R}^{n}` is the desired weights vector of the barycenter - The input measures are :math:`\nu_i = \sum_{j=1}^{k_i}a_{i,j}\delta_{x_{i,j}}` - The :math:`\mathbf{a}_i \in \mathbb{R}^{k_i}` are the respective empirical measures weights (on the simplex) - The :math:`\mathbf{X}_i \in \mathbb{R}^{k_i, d_i}` are the respective empirical measures atoms locations - :math:`w = (w_1, \cdots w_p)` are the barycenter coefficients (on the simplex) - Each :math:`\mathbf{P}_i \in \mathbb{R}^{d, d_i}`, and :math:`P_i\#\nu_i = \sum_{j=1}^{k_i}a_{i,j}\delta_{P_ix_{i,j}}` As show by :ref:`[42] <references-generalized-free-support-barycenter>`, this problem can be re-written as a Wasserstein Barycenter problem, which we solve using the free support method :ref:`[20] <references-generalized-free-support-barycenter>` (Algorithm 2). Parameters ---------- X_list : list of p (k_i,d_i) array-like Discrete supports of the input measures: each consists of :math:`k_i` locations of a `d_i`-dimensional space (:math:`k_i` can be different for each element of the list) a_list : list of p (k_i,) array-like Measure weights: each element is a vector (k_i) on the simplex P_list : list of p (d_i,d) array-like Each :math:`P_i` is a linear map :math:`\mathbb{R}^{d} \rightarrow \mathbb{R}^{d_i}` n_samples_bary : int Number of barycenter points Y_init : (n_samples_bary,d) array-like Initialization of the support locations (on `k` atoms) of the barycenter b : (n_samples_bary,) array-like Initialization of the weights of the barycenter measure (on the simplex) weights : (p,) array-like Initialization of the coefficients of the barycenter (on the simplex) numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (>0) verbose : bool, optional Print information along iterations log : bool, optional record log if True numThreads: int or "max", optional (default=1, i.e. OpenMP is not used) If compiled with OpenMP, chooses the number of threads to parallelize. "max" selects the highest number possible. eps: Stability coefficient for the change of variable matrix inversion If the :math:`\mathbf{P}_i^T` matrices don't span :math:`\mathbb{R}^d`, the problem is ill-defined and a matrix inversion will fail. In this case one may set eps=1e-8 and get a solution anyway (which may make little sense) Returns ------- Y : (n_samples_bary,d) array-like Support locations (on n_samples_bary atoms) of the barycenter .. _references-generalized-free-support-barycenter: References ---------- .. [20] Cuturi, M. and Doucet, A.. "Fast computation of Wasserstein barycenters." International Conference on Machine Learning. 2014. .. [42] Delon, J., Gozlan, N., and Saint-Dizier, A.. Generalized Wasserstein barycenters between probability measures living on different subspaces. arXiv preprint arXiv:2105.09755, 2021. """ nx = get_backend(*X_list, *a_list, *P_list) d = P_list[0].shape[1] p = len(X_list) if weights is None: weights = nx.ones(p, type_as=X_list[0]) / p # variable change matrix to reduce the problem to a Wasserstein Barycenter (WB) A = eps * nx.eye( d, type_as=X_list[0] ) # if eps nonzero: will force the invertibility of A for P_i, lambda_i in zip(P_list, weights): A = A + lambda_i * P_i.T @ P_i B = nx.inv(nx.sqrtm(A)) Z_list = [ x @ Pi @ B.T for (x, Pi) in zip(X_list, P_list) ] # change of variables -> (WB) problem on Z if Y_init is None: Y_init = nx.randn(n_samples_bary, d, type_as=X_list[0]) if b is None: b = nx.ones(n_samples_bary, type_as=X_list[0]) / n_samples_bary # not optimized out = free_support_barycenter( Z_list, a_list, Y_init, b, numItermax=numItermax, stopThr=stopThr, verbose=verbose, log=log, numThreads=numThreads, ) if log: # unpack Y, log_dict = out else: Y = out log_dict = None Y = Y @ B.T # return to the Generalized WB formulation if log: return Y, log_dict else: return Y