Source code for ot.gnn._layers

# -*- coding: utf-8 -*-
"""
Template Fused Gromov Wasserstein
"""

# Author: Sonia Mazelet <sonia.mazelet@ens-paris-saclay.fr>
#         Rémi Flamary <remi.flamary@unice.fr>
#
# License: MIT License

import torch
import torch.nn as nn
from ._utils import (
    TFGW_template_initialization,
    FGW_distance_to_templates,
    wasserstein_distance_to_templates,
)


[docs] class TFGWPooling(nn.Module): r""" Template Fused Gromov-Wasserstein (TFGW) layer. This layer is a pooling layer for graph neural networks. Computes the fused Gromov-Wasserstein distances between the graph and a set of templates. .. math:: TFGW_{ \overline{ \mathcal{G} }, \alpha }(C,F,h)=[ FGW_{\alpha}(C,F,h,\overline{C}_k,\overline{F}_k,\overline{h}_k)]_{k=1}^{K} where : - :math:`\mathcal{G}=\{(\overline{C}_k,\overline{F}_k,\overline{h}_k) \}_{k \in \{1,...,K \}} \}` is the set of :math:`K` templates characterized by their adjacency matrices :math:`\overline{C}_k`, their feature matrices :math:`\overline{F}_k` and their node weights :math:`\overline{h}_k`. - :math:`C`, :math:`F` and :math:`h` are respectively the adjacency matrix, the feature matrix and the node weights of the graph. - :math:`\alpha` is the trade-off parameter between features and structure for the Fused Gromov-Wasserstein distance. Parameters ---------- n_features : int Feature dimension of the nodes. n_tplt : int Number of graph templates. n_tplt_nodes : int Number of nodes in each template. alpha : float, optional FGW trade-off parameter (0 < alpha < 1). If None alpha is trained, else it is fixed at the given value. Weights features (alpha=0) and structure (alpha=1). train_node_weights : bool, optional If True, the templates node weights are learned. Else, they are uniform. multi_alpha: bool, optional If True, the alpha parameter is a vector of size n_tplt. feature_init_mean: float, optional Mean of the random normal law to initialize the template features. feature_init_std: float, optional Standard deviation of the random normal law to initialize the template features. References ---------- .. [53] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty. "Template based graph neural network with optimal transport distances" """ def __init__( self, n_features, n_tplt=2, n_tplt_nodes=2, alpha=None, train_node_weights=True, multi_alpha=False, feature_init_mean=0.0, feature_init_std=1.0, ): r""" Template Fused Gromov-Wasserstein (TFGW) layer. This layer is a pooling layer for graph neural networks. Computes the fused Gromov-Wasserstein distances between the graph and a set of templates. .. math:: TFGW_{\overline{\mathcal{G}},\alpha}(C,F,h)=[FGW_{\alpha}(C,F,h,\overline{C}_k,\overline{F}_k,\overline{h}_k)]_{k=1}^{K} where : - :math:`\mathcal{G}=\{(\overline{C}_k,\overline{F}_k,\overline{h}_k) \}_{k \in \{1,...,K \}} }` is the set of :math:`K` templates charactersised by their adjacency matrices :math:`\overline{C}_k`, their feature matrices :math:`\overline{F}_k` and their node weights :math:`\overline{h}_k`. - :math:`C`, :math:`F` and :math:`h` are respectively the adjacency matrix, the feature matrix and the node weights of the graph. - :math:`\alpha` is the trade-off parameter between features and structure for the Fused Gromov-Wasserstein distance. Parameters ---------- n_features : int Feature dimension of the nodes. n_tplt : int Number of graph templates. n_tplt_nodes : int Number of nodes in each template. alpha : float, optional FGW trade-off parameter (0 < alpha < 1). If None alpha is trained, else it is fixed at the given value. Weights features (alpha=0) and structure (alpha=1). train_node_weights : bool, optional If True, the templates node weights are learned. Else, they are uniform. multi_alpha: bool, optional If True, the alpha parameter is a vector of size n_tplt. feature_init_mean: float, optional Mean of the random normal law to initialize the template features. feature_init_std: float, optional Standard deviation of the random normal law to initialize the template features. References ---------- .. [53] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty. "Template based graph neural network with optimal transport distances" """ super().__init__() self.n_tplt = n_tplt self.n_tplt_nodes = n_tplt_nodes self.n_features = n_features self.multi_alpha = multi_alpha self.feature_init_mean = feature_init_mean self.feature_init_std = feature_init_std tplt_adjacencies, tplt_features, self.q0 = TFGW_template_initialization( self.n_tplt, self.n_tplt_nodes, self.n_features, self.feature_init_mean, self.feature_init_std, ) self.tplt_adjacencies = nn.Parameter(tplt_adjacencies) self.tplt_features = nn.Parameter(tplt_features) self.softmax = nn.Softmax(dim=1) if train_node_weights: self.q0 = nn.Parameter(self.q0) if alpha is None: if multi_alpha: self.alpha0 = torch.Tensor([0] * self.n_tplt) else: self.alpha0 = torch.Tensor([0]) self.alpha0 = nn.Parameter(self.alpha0) else: if multi_alpha: self.alpha0 = torch.Tensor([alpha] * self.n_tplt) else: self.alpha0 = torch.Tensor([alpha]) self.alpha0 = torch.logit(self.alpha0)
[docs] def forward(self, x, edge_index, batch=None): """ Parameters ---------- x : torch.Tensor Node features. edge_index : torch.Tensor Edge indices. batch : torch.Tensor, optional Batch vector which assigns each node to its graph. """ alpha = torch.sigmoid(self.alpha0) q = self.softmax(self.q0) x = FGW_distance_to_templates( edge_index, self.tplt_adjacencies, x, self.tplt_features, q, alpha, self.multi_alpha, batch, ) return x
[docs] class TWPooling(nn.Module): r""" Template Wasserstein (TW) layer, also known as OT-GNN layer. This layer is a pooling layer for graph neural networks. Computes the Wasserstein distances between the features of the graph features and a set of templates. .. math:: TW_{\overline{\mathcal{G}}}(C,F,h)=[W(F,h,\overline{F}_k,\overline{h}_k)]_{k=1}^{K} where : - :math:`\mathcal{G}=\{(\overline{F}_k,\overline{h}_k) \}_{k \in \{1,...,K \}} \}` is the set of :math:`K` templates characterized by their feature matrices :math:`\overline{F}_k` and their node weights :math:`\overline{h}_k`. - :math:`F` and :math:`h` are respectively the feature matrix and the node weights of the graph. Parameters ---------- n_features : int Feature dimension of the nodes. n_tplt : int Number of graph templates. n_tplt_nodes : int Number of nodes in each template. train_node_weights : bool, optional If True, the templates node weights are learned. Else, they are uniform. feature_init_mean: float, optional Mean of the random normal law to initialize the template features. feature_init_std: float, optional Standard deviation of the random normal law to initialize the template features. References ---------- .. [54] Bécigneul, G., Ganea, O. E., Chen, B., Barzilay, R., & Jaakkola, T. S. (2020). [Optimal transport graph neural networks] """ def __init__( self, n_features, n_tplt=2, n_tplt_nodes=2, train_node_weights=True, feature_init_mean=0.0, feature_init_std=1.0, ): r""" Template Wasserstein (TW) layer, also known as OT-GNN layer. This layer is a pooling layer for graph neural networks. Computes the Wasserstein distances between the features of the graph features and a set of templates. .. math:: TW_{\overline{\mathcal{G}}}(C,F,h)=[W(F,h,\overline{F}_k,\overline{h}_k)]_{k=1}^{K} where : - :math:`\mathcal{G}=\{(\overline{F}_k,\overline{h}_k) \}_{k \in \llbracket 1;K \rrbracket }` is the set of :math:`K` templates characterized by their feature matrices :math:`\overline{F}_k` and their node weights :math:`\overline{h}_k`. - :math:`F` and :math:`h` are respectively the feature matrix and the node weights of the graph. Parameters ---------- n_features : int Feature dimension of the nodes. n_tplt : int Number of graph templates. n_tplt_nodes : int Number of nodes in each template. train_node_weights : bool, optional If True, the templates node weights are learned. Else, they are uniform. feature_init_mean: float, optional Mean of the random normal law to initialize the template features. feature_init_std: float, optional Standard deviation of the random normal law to initialize the template features. References ---------- .. [54] Bécigneul, G., Ganea, O. E., Chen, B., Barzilay, R., & Jaakkola, T. S. (2020). [Optimal transport graph neural networks] """ super().__init__() self.n_tplt = n_tplt self.n_tplt_nodes = n_tplt_nodes self.n_features = n_features self.feature_init_mean = feature_init_mean self.feature_init_std = feature_init_std _, tplt_features, self.q0 = TFGW_template_initialization( self.n_tplt, self.n_tplt_nodes, self.n_features, self.feature_init_mean, self.feature_init_std, ) self.tplt_features = nn.Parameter(tplt_features) self.softmax = nn.Softmax(dim=1) if train_node_weights: self.q0 = nn.Parameter(self.q0)
[docs] def forward(self, x, edge_index=None, batch=None): """ Parameters ---------- x : torch.Tensor Node features. edge_index : torch.Tensor Edge indices. batch : torch.Tensor, optional Batch vector which assigns each node to its graph. """ q = self.softmax(self.q0) x = wasserstein_distance_to_templates(x, self.tplt_features, q, batch) return x